
ORNL Accelerator Physics Memo

Parallel Computing with ORBIT

8/17/1999

John Galambos

ORNL

Spallation Neutron Source Project
Oak Ridge National laboratory

PO Box 2009 MS 8218
Oak Ridge TN 37831

Parallel Computing with ORBIT

This note serves to describe the initial parallel computing implementation of the ORBIT code and show
some timing results. The bulk of ORBIT is parallelized, using PVM as the message passing mechanism.
Tests have been performed on the SNS Accelerator Physics Wonderland cluster.

I. General Parallel Structure

It is now possible to operate ORBIT on parallel machines, using a message passing parallel
implementation. ORBIT is a particle tracking code for rings, and incorporates a programmable
interactive driver shell. Serial runs are set up by writing small scripts (or programs) as the input file.
The parallel implementation approach taken here is to start a run just as a serial run, by reading an input
file. The initial process started serves as the parent. The parent process spawns multiple additional
ORBIT processes on different CPUs, which each parse the same input script file (see Fig. 1), and
perform the “same tasks”. In this sense, each process running on a parallel node acts as a serial job.

Input Script File for Parallel Runs

spawn children which also read this input script
(parent only)

ring node set-up

macro-particle injection scheme
(children only)

do turns

send output

quit

Loop a
while

Fig 1 General input file script flow for a typical parallel run. Parts of the input script which
would be different from a serial run are highlighted in red italics.

The data decomposition scheme is extremely simple with this implementation, macro-particles are never
shifted from one processor to another. Most of the calculation on each parallel node proceeds
independently just as if it was a stand-alone serial calculation. There are several exceptions however,
which require communication between the parallel processes, namely:

- Initialization of the random number seed used to generate macro-particles from prescribed
distributions (so that each processes has a unique macro-population)

- Space charge calculations
- Diagnostic calculations (e.g. overall beam moments)
- Output

Other calculations such as lattice matrix advances, aperture checks, thin lens kicks, etc. have no need for
parallel communication and proceed the same as for a serial run. As such, most modules in ORBIT are
unchanged in the new parallel implementation. The message passing has been coded only where needed
in the above mentioned parts. The most critical message passing occurs in the transverse space charge
section. As multiple herds are tracked in parallel around the ring on different processors, at each space
charge kick node, the collective force from all the particles must be gathered and communicated
between nodes. Typically this happens 100’s of times per turn. The strategy taken to parallelize this
calculation is shown in Fig. 2. Note that each child calculates its own FFT of both the Greens function
and the global charge distribution1. This is faster than waiting for one processor to do it, and passing the
results2. Also note that the Greens function FFT is done in-between the gather and scatter of the global
charge distribution, in order to hide as much latency from this scatter/gather as possible. This calculation
arrangement was arrived at for the SNS “Wonderland” beowulf cluster using 533MHz alpha chip
processors and a 100 Mbs switched private network for communication. Using systems with faster
communication/(processor time) ratios may make it worthwhile to calculate the FFT of the charge
distribution on the parent in parallel while the children calculate the Greens function FFT, and then pass
the calculated charge distribution to the children.

The actual message passing was done with the PVM package [2] here. The MPI package may be
substituted in the future. Details of the use of ORBIT for parallel runs are discussed in the User Manual
[3].

1 We repeatedly FFT the Green’s function because our grid is not fixed throughout the calculation. It is allowed to grow as
the particle emittances grow.
2 Passing the charge distribution involves only ¼ of the grid points since the grid extends 2x’s the particle extent to avoid
false aliasing. Also passing the FFT output involves 2x’s the number of grid points (real & complex).

Parent Child

start start

set up PIC grid based on
macro-particles

sync grid sync PIC grid

bin macro-particles

get global charge send local charge
 distribution distribution

set up Greens function

FFT Greens function

send global charge get global charge
 distribution distribution

return convolute charge &
Greens function

backward FFT for forces

Fig. 3.2 Parallel flow logic for the transverse space charge calculation.

Example Runs

Constant macro-particle number, varying CPU number

As a first example we compare the results of the same calculation performed with varying number of
processors. This calculation consists of injecting 100,000 particles and tracking them 10 turns. The
injected particles are sampled from a gaussian distribution with εRMS = 30 π-mm-mrad, and truncated at
240 π-mm-mrad (both horizontal and vertical). Fig. 3 shows the resultant distributions after 10 turns for
the cases of (1) a serial calculation, (2) a parallel calculation using 2 processors, and (3) a parallel
calculation using 4 processors. The distributions are very similar, and differences at the level < 0.01%
are due to the small number of particles (10) in this region and the use of different random numbers in
the particle initialization sampling for these cases. This demonstrates that the space charge parallel
algorithm calculates the same distribution as the serial method. Also shown is the injected distribution
tracked without space charge. The change in the distribution due to space charge is noticeable.

Horizontal Emittance

0.001

0.01

0.1

1

10

100

0 100 200 300 400

pi-mm-mrad

%
 W

it
h

 E
m

it
ta

n
ce

 >

1 node
2 nodes
4 Nodes
No SC

Vertical Emittance

0.001

0.01

0.1

1

10

100

0 100 200 300 400

pi-mm-mrad

%
 W

it
h

 E
m

it
ta

n
ce

 >

1 node
2 nodes
4 Nodes
No SC

Figure 3. Comparison of emittance distributions calculated with serial and parallel algorithms.

Constant CPU number, varying macro-particle number

As another example, we show the impact of using more macro-particles, on the final painted emittance.
This case is for a full injection scenario into the SNS ring for a case in which the painting scheme is
optimized to minimize growth beyond the collimator acceptance (180 π-mm-mrad), and to also produce
fairly flat profiles for the target. The calculation involves tracking for 1158 turns, used 480 azimuthal
steps/turn, and used a 64x64 grid for the transverse space charge. The closed orbit bump scheme here is
programmed to paint particles below 115 π-mm-mrad. Figure 4 shows the resultant horizontal and
vertical emittance distributions. The legend numbers refer to the final number of macro-particles
accumulated at the end of the run. The 105k macro-particle case is a serial run (used ~ 19 hrs CPU
time). The 210 k, 300k and 1000k macro-particle cases are parallel runs using 4 processors and took
11.7, 15.5 and 52 hrs respectively to run. Running 1,000,000 macro-particles with a serial calculation is
impractical, from a run turn-around time perspective. It is evident that the space charge has caused halo
growth well beyond the injection limits. For the 1,000,000 macro-particle case the horizontal
distribution begins to show resolution at the 10-4-10-5 level, where beam spreading has occurred.

Horizontal Emittance

0.0001

0.001

0.01

0.1

1

10

100

0 100 200 300

ππ -mm-mrad

 %
 >

105 k

210 k

300 k

1000 k

Vertical Emittance

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200

ππ -mm-mrad

 %
 >

105 k

210 k

300 k

1000 k

Figure 4. Impact of increased number of macro-particles for a complete injection scenario. The 210k,
300k and 1000k macro-particle cases are parallel runs.

Timings

First some simple timings were done to study the parallel efficiency. These runs were performed on the
SNS Wonderland Beowulf cluster using 533 MHz alpha chip processors, connected by a 100 Mbs
switch on a private network. The parallel efficiency is defined to be:

cpu

serial

N×
=

//
// τ

τ
η ,

where τserial is the serial CPU time, and τ// is the (wall clock) time to do the same calculation in parallel
with Ncpu parallel processing CPUs. We investigate the sensitivity of this efficiency to the number of
macro-particles used and to the FFT grid as shown in Table 1. Figure 5 shows the timing results for the
128x128 transverse grid size example. Also the cases for 1 CPU are serial run counterparts. This
example calculation consists of pushing a macro- particle herd for one turn, using 480 lattice
elements/turn. Only linear lattice elements are used here, and there is one longitudinal space charge
update included. As can bee seen, the parallel computation is > 90% efficient if there are > 10-20
particles/cell.

With fewer particles, the calculation becomes less efficient because the computation spends relatively
more time in inter process communication and in calculating the FFT. We investigate these
inefficiencies by artificially masking certain parts of the transverse space charge calculation, and seeing
the impact of computation time. These runs do not produce physically realistic results, but do shed light
on which parts of the parallel implementation are using the most time. An inefficient case from Table 1
is used for this example (128x128 grid with 125k macro-particles and 4 cpus). First we artificially mask
the synchronization of the grid used across CPUs (i.e. skip this part of the parallel calculation). This has
a minimal impact on the total computation time, indicating that this message passing is not causing
significant parallel inefficiencies. Next we mask the synchronization of the charge distribution across the
CPUs. This has a large impact, increasing the parallel efficiency from 61% to 78%, i.e. eliminating
almost half of the parallel inefficiency. Finally we mask all the message passing in the transverse space
charge calculation, and note that the parallel efficiency increases to 80%. There is still a 20%
inefficiency for this case, compared to the “ideal time” derived by dividing the serial CPU time by the
number of processors used. This residual inefficiency is inherent in the parallel calculation method used;
namely each processor calculates the FFT, and is spending a larger fraction of its time performing the
FFT calculation, rather than pushing the macro-particles, as the parallel case has fewer macros /CPU
than the serial case. Thus even if the inter-process communication is infinitely fast, there is still an
inherent parallel inefficiency associated with the parallel implementation adopted here. But the scheme
appears to be fast enough to benefit use of modest sized clusters (say < 16-32 nodes) for cases with large
numbers of macro-particles.

Table 1. Sensitivity of the parallel computation efficiency to the transverse grid size, the number of
macro-particles and the number of CPUs used.

64 x 64 grid 128 x 128 grid

N-cpu time
(sec)

η// N-cpu time
(sec)

η//

200 k macros 1 M macros
1 226 1.000 1 1303 1.000
2 124 0.91 2 701 0.93
4 59 0.96 4 348 0.94
7 47 0.69 7 220 0.85

100 k macros 500k macros
1 124 1.000 1 610 1.000
2 62 1.000 2 359 0.85
4 36 0.86 4 204 0.75
7 30 0.59 7 124 0.70

50k macros 250 k macros
1 54.2 1.000 1 312 1.000
2 36 0.75 2 192 0.81
4 21 0.65 4 104 0.75
7 23 0.34 7 83 0.54

125 k Macros
1 160 1.000
2 94 0.85
4 66 0.61

7 66 0.35

Table 2. Impact of various components of the transverse space charge message passing on the parallel
inefficiencies. The case with a 128x128 grid, 125k macros, and 4 CPUs is used.

Case Time (sec) η//

Full parallel calculation 66 0.61
Mask the TSC grid synchronization 63 0.63
Mask the charge distribution synchronization 51 0.78
Mask all transverse space charge message passing 50 0.8
Ideal parallel case 40* 1.0
* this is simply taken to be the serial CPU time/4

0

200

400

600

800

1000

1200

1400

1 3 5 7 9

N-processors

T
im

e
(s

ec
) 1000 k parts

500 k parts
250 k parts

125 k parts

0.000

0.200

0.400

0.600

0.800

1.000

1 3 5 7 9

N-processors

P
ar

al
le

l E
ff

ic
ie

n
cy

1000 k parts

500 k parts
250 k parts

125 k parts

Fig. 5 Timings and efficiencies for a single turn using a 128x128 transverse grid and 480
steps per turn. Note the poor parallel performance with < 250,000 macro-particles.

References

1- ORBIT - A Ring Injection Code with Space Charge , J. Galambos, S. Danilov, D. Jeon, J. Holmes,
D. Olsen, ORNL, Oak Ridge, TN; J. Beebe-Wang, A. Luccio, BNL, Upton, NY, PAC99,
http://ftp.pac99.bnl.gov/Papers/Wpac/THP82.pdf

2- Parallel Virtual Machine, see http://www.epm.ornl.gov/pvm/
3- ORBIT User Manual – see http://www.ornl.gov/~jdg/APGroup/Codes/Codes.html

