
XAL Accelerator Class Hierarchy

1 Introduction
XAL is a Java class hierarchy representing an accelerator. It is meant to provide a
programming framework with a “physical” view of the accelerator, as viewed from an
accelerator physics perspective. For example, the physicist thinks of the accelerator as
having “sequences” which are in turn composed of beamline elements. Generally, the
beamline elements consist of different kinds of magnets, RF cavities and diagnostics. The
magnets consist of dipoles, quadrupoles, etc. Within this accelerator framework, for each
beamline element type abstract methods are provided, so that the programmer does not
need to know specifics about element or signal names.

There are two primary external sources of information for this framework: 1) a database
containing the static accelerator configuration (e.g. lattice configuration of an accelerator
sequence), and 2) the EPICS control system providing the real time values of dynamic
accelerator properties (e.g. BPM position reading).

This document is not meant to be a comprehensive reference, but rather tries to give
general information about the class structure, and explain meaning and usage by example
snippets. For detailed class views, member definitions etc., the JavaDoc manual [1.1]
should be referred to.

2 Overall class structure

The XAL class structure is shown at a high level in Fig. 1.1 . Each of these branches is
described in more detail in the sections below, and a general description is provided here.

2.1 smf Package

The “standard machine format” or “smf” package contains classes that describe the basic
accelerator framework, namely the accelerator, accelerator sequence and accelerator
nodes. Several other packages are contained in the smf package, as described below.

impl Package
This package contains the actual implementations of the abstract AcceleratorNode
class. For example, implementations such as quadruples, beam position monitors,
etc. These classes describe the components that actually make up an accelerator
beamline. The unique features and methods of each beamline type device are
contained in the appropriate class.
xdxf Package
The xdxf package contains services useful for parsing the smf structure from an
XML structured file.
chan Package
This package contains important links between the accelerator class structure and
the actual machine. Information from the machine (magnets, diagnostics, rf, etc.)
is provided by the EPICS control system, in particular through the EPICS channel

access client1). The EPICS interface is on a signal-by-signal basis, with no
hierarchy other than possible naming conventions of the signals. The mapping of
the signals to common interfaces for AcceleratorNode types is done in this
package. Each AcceleratorNode type is assigned a ChannelSuite, which is a
collection of channels, with built-in interfaces to hide the actual mechanics of
making connections to the EPICS control system.
attr Package
The attribute package, which is a mechanism to hold “attribute sets” of related
information for different AcceleratorNode types. For instance, all
AcceleratorNodes have an alignment attribute-set containing information about
their installed position relative to the design position. Also, all objects of the
Magnet sub-class have an attribute set containing information about their multi-
pole field levels. Having a generalized attribute-set container for related
information of a certain class offers advantages in parsing XML files.

2.2 XAL Channel Access

Within the XAL framework, channel access to EPICS is handled in the xal.ca
package. This package makes extensive use of the jca Java package by Eric Boucher.
The jca package is essentially a JNI (Java Native Interface) wrapper to the EPICS
channel access library written in C. Thus in the current version of XAL, it is necessary to
have jca installed on the target platform, with all it’s required shared libraries and
corresponding EPICS channel access shared libraries.

Although channel access in XAL (i.e., the xal.ca package) sits atop the jca package,
the later is essentially hidden from the user. Thus, one needs to know nothing of jca to
use xal.ca. This condition is also present to facilitate future upgrades. The current
architecture is one that was quickest to implement. For performance reasons, it may be
necessary to modify, or even remove, the jca package. The xal.ca package presents a
clean, object-oriented picture of channel access. As such, future modifications can be
made without disrupting the user’s view of channel access.

2.2.1 The Channel Class
Most all of channel access in XAL is handled through the Channel class. This class

As a default, the ca_pend_io() and ca_pend_event() functions of EPICS channel access
are called after every operation that involves channel access. Thus, it appears to the users
of xal.ca that the channel access requests are queued and flushed automatically in one get
or put operation. If this becomes a performance issue, it is possible to stop this automatic
flushing of the channel access request queue by calling the Channel class method
setSyncRequest(true). After this call, the request buffer must be flushed
externally using the static methods Channel.pendIO(double) or
Channel.pendEvent(double), which ever is appropriate.

1 Following EPICS nomenclature, we refer to each individual “signal” from the machine
as a channel. This is also referred to as a process variable or PV sometimes.

In the case of monitors, a polling daemon is started which continually polls EPICS
channel access for monitor events. Once all monitors have been stopped, the daemon is
automatically terminated and polling stops. One may access the polling daemon directly
using the static methods of the class PendDaemon.

2.2.1.1 A Note About Data Types
When retrieving data from the Channel class, or EPICS channel access in general, you
can receive the data in a variety of different data types and shapes. However, the EPICS
database record describing the process variable determines the native type of that
channel. When asking for the channel value as data type other than that of the native
type, the value is formatted to the requested type on the IOC then sent to the requestor.
Thus, additional CPU time is consumed on the IOC casting the value to the appropriate
type. This additional CPU burden might cause performance problems on a heavily
loaded IOC. It is typically safest to ask for the value of the process variable in its native
type format, and then cast to the desired type on the client computer. The Channel
method nativeType() returns an enumerated description of the channel’s native type
on the IOC computer.

2.2.1.2 Connecting
To connect to a process variable (PV) on an EPICS IOC the Channel class must be
supplied with the EPICS channel name. This can be accomplished with either the
initializing constructor Channel(String) or by using the
setChannelName(String) method. For example, the following code excerpt
creates a Channel object, connects to the EPICS process variable labeled
“MEBT_Mag:QH01:fieldRB”, then disconnects:

Channel chan = new Channel(“MEBT_Mag:QH01:fieldRB”);
Boolean bResult;

bResult = chan.connect();
if (!bResult) {
System.out.println(“could not connect”);
return;
} else
System.out.println(“connected to channel!”);
chan.disconnect();
return;
}

2.2.1.3 Process Variable Get’s
To get the value of a process variable, the Channel class provides a suite of methods.
These methods have the form getXY(), where X is the shape of the data (either scalar or
array) and Y is the type of the data (e.g., byte, int, float).

fltVal = m_chan.getValFlt();
m_chan.getValFltCallback(this);

2.2.1.4 Notifications
It is possible to receive notifications from channel connections and process variable puts.
To do this use the callback form of the appropriate Channel method and the
IEventSinkNotify interface. For example, suppose you have created a class
Notifications that supports the IEventSinkNotify interface. In order to set a
process variable, represented by the object chan, to the value 2.13 and have notification
sent to an instance of Notifications you could use the following code excerpt:

Notifications notes = new Notifications();
chan.putValCallback(2.13, notes);

Channel access would then call the method eventNotify(Channel, int) of the
object notes after the put operation was completed.

Notice that the same class, Notifications, could be used to handle a connection
notification event. The only requirement is that the class supports the IEventNotifySink
interface, what the class does with the notification is arbitrary. Such a situation might
look like the following:

Channel chan = new
Channel(“MEBT_Mag:QH01:fieldRB”);
Notification notes = new Notification();
Boolean bResult;

bResult = chan.connectCallback(notes);

2.2.1.5 Monitors
To monitor a process variable is to receive continual updates of its value. Setting an
appropriate parameter in the monitor controls the conditions as to what time or condition
the updates come. (Also, the EPICS database record can contain information specific to
these updates.) Monitoring in XAL is accomplished by calling the appropriate
addMonitorXXX() method of the Channel class, and maintaining a reference to the
Monitor object returned by that call. As in the situation of process variable gets, there
exists one form of the addMonitorXXX() method for each type of EPICS data
supported. For example, to monitor a process variable and receive the data as an array of
integers, you would use addMonitorArrInt().

This class provides an object view of an EPICS channel access point. … Insert Chris
Allen’s input)

3 Units and coordinate systems
In general MKS units are employed. Table 1.1 lists the units for many parameters. Note
that while the unit for length is m, many displays may convert to mm for display
purposes. Also, the units for values coming from the EPICS control system may not be

the same as described here – in this case conversions are done for the internal XAL
representation.

Quantity Unit
Length m (along the reference orbit + global

coordinates)
mm (transverse direction from the beam)

Time sec
Angle degrees
Voltage (e.g. RF) kV
Magnetic Field T
Current A

Magnetic Fields

The multipole fields in the magnets are characterized by:

∑
=

−











=

1

1

n

n

ref
nnormal R

rBB

∑
=

−











=

1

1

n

n

ref
nskew R

rAB

where Bn and An have units of (T/mn-1) and n=1 refers to the dipole field2. Methods that
return field quantities (i.e. getField() methods) return only the primary normal (skew)
component for normal (skew) magnets. The effective magnetic length is not included in
these return values.

4 References

1.1 – The XAL JavaDoc Manual – see

http://www.sns.gov/APGroup/appProg/xalDoc/index.html

2 . Note that the magnet measurement data are typically for integrated field quantities,
and have the additional magnetic length included.

