
ICALEPCS2007

Extendend Application Fields for the
Renovated GSI Control System

K. Höppner, L. Hechler, K. Herlo, P. Kainberger, U. Krause, S. Matthies

GSI, Darmstadt, Germany

'

&

$

%

Abstract

The current GSI control system uses a very monolithic approach that made
it difficult to extend the system to other than the original platforms (VME
front ends and OpenVMS on the application level). For the present renovation
project of the communication layers, flexibility was a major design criterion.
Front-end and application levels are connected via CORBA middleware, giv-
ing free choice for using various system architectures and programming lan-
guages on both levels. While most of the current front-end software will be
ported to the existing VME front-end environment, now running Linux, the
new system can integrate devices running on various architectures and op-
erating systems into the new GSI control system. To model equipment func-
tionality as independently as possible, generating adapter code from a well-
defined XML description of device models is now under development. This
will make the task of porting the existing 65 device models (including around
3000 properties) to the new modular approach easier.

Migration Status

* Present GSI control system uses VME-bus controllers on

front-end level: M680xx based realtime equipment

controllers (EC) and non-realtime device presentation or

supervising controllers (DPC/SC), communication with

operating level via in-house network protocols

4 In progress: replacement of supervising controllers with

PowerPC based VME boards, running embedded Linux.

4 First use in real life accelerator controls in summer 2007

4 Replacement of middleware level with CORBA

4 New object oriented property classes, but reuse of present

code (user support routines—USR)

4 Extending the scope of the control system to non-VME

based device servers

4 Device server API in C++

4 Client API in C++, Java, and Python
'

&

$

%

Client

TK1MU1
proxy

Linux, VMS, Windows

Embedded Linux

CORBA

TK1MU1

callreadField

writeField

readStatus

Request

Device Access in the new control system via CORBA; reuse of exist-

ing USR code

Septum Motor Control: M-Box

* New injection septum in the heavy ion synchrotron (SIS)

to be installed November 2007

* Simultaneous movement of motor axes required due to

limited mechanical distortion of anode and cathode.

4 Moving anode and cathode with Cosylab’s M-Box,

integrating a PMAC (programmable multi axis controller)

motor control and a MicroIOC, an embedded system

based on Intel CPU running Debian Linux

4 Device Manager on x86 platform, in the past used for

testing and simulation, is brought into real life accelerator

controls.

'

&

$

%
Photograph of the new septum

Automatic Code Generation

* GSI control system supports approximately 65 equipment

models, implementing 3000 properties.

* While major part of USR code may be reused, the wrapper

classes for the object oriented representation of

equipment models and their properties have to be

implemented for the migration to the new control system.

4 We invented a code generator based on a XML

presentation of equipment models

4 Code generator provides support for the pulse-to-pulse

mode of GSI accelerators and the needs for restricting

access to device properties during cancer therapy

operation.

4 Created files:

l C++ header files for device properties and their

actions (read, write, call)

l C++ USR code skeletons for property actions, to be

filled with existing USR code

l In-code API documentation to be processed with

Doxygen, generating HTML and LATEX/PDF format.

4 Code generation based on a XSLT stylesheet processed

with XalanJ, providing a flexible, platform independent

Java based solution.

Example of a XML device definition
<eqmod>

<name>MX</name>
<creator>KlausHoeppner</creator>
<version>09.01.01</version>
<description>Multiplexed Dipole

Magnet</description>
<variant id="1">PERMANENT_SIS</variant>
<variant id="2">SHARED_SIS</variant>
<variant id="3">PERMANENT_UNI</variant>
<property category="master">

<name>INIT</name>
<description>Initialize</description>
<action type="call" medlock="all"/>

</property>
<property category="slave">

<name>CURRENTS</name>
<description>Current Set

Value</description>
<action type="read" medlock="none"/>
<action type="write" medlock="vrtacc"/>
<data type="Float32">

<value name="current">Current (Set)</value>
</data>

</property>
</eqmod>

'

&

$

%

Developer

XML
device definition

XML Schema

XalanJ XSLT

C++ headers

C++ source skeletons

Doxygen

API docs

LATEX

PDF

HTML

create validate

Workflow for generation of C++ sources and API documentation

Windows Client and Server API

C++ client and server code was ported to run on MS Windows:

4 Identification of system dependencies in C++ code

4 Definition of wrapper classes with common layer for

system dependent calls, providing the same interface for

message queueing, signal handling, and system logging

for Windows and Linux

4 Library providing some Unix functionality on Windows

'

&

$

%
Screenshot of a Windows Client


