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Frequency Shift Observer for an
SNS Superconducting RF Cavity

Sung-Il Kwon, Amy Regan, and Mark Prokop

Abstract—In contrast to a normal conducting RF cavity, a su- phonics, transmission line losses, and electronic hardware dis-
perconducting RF cavity is very susceptible to shifts in its reso- turbances. The required power due to the Lorentz force detuning
nance frequency. The main sources of the shift are Lorentz force s proportional to the square of the Lorentz force detuning. In the
detuning and microphonics. In spallation neutron source, to com- case of a medium beta SRF cavity #70 in the SNS SRF linac,

pensate for the frequency shift, a feedforward control is to be ap- 2
plied. In this paper, as an initiative step, a frequency shift observer the expected Lorentz force detuning-i807 Hz and the cor-

is proposed which is simple enough to be implemented with a dig- responding required power is 26 kW [3]. In order to prevent
ital signal processor in real time. Simulation results of the proposed the klystron from operating in the saturation region, a hardware
frequency shift observer show reliable performance and acceptable |imiter or a software limiter can be implemented in the low level
computation time for the real time implementation. RF control system. In this case, when the low level RF control
Index Terms—Disturbance observer, feedback control, feed- System output reaches the upper bound of the limiter due to the
forward control, Lorentz force detuning, microphonics, spallation increasing Lorentz force detuning, the control system does not
neutron source (SNS), superconducting RF cavity. supply enough output to compensate for the Lorentz force de-
tuning. One way to avoid this actuator saturation is to make the
klystron operate in such a way that it generates enough max-
imum output power to guarantee power control margin for the
HE spallation neutron source (SNS) linac to be built gtequency shift, thus requiring a lot of klystron power overhead
Oak Ridge National Laboratory (ORNL), TN, consists ofor the minimum detuning regime. Another possible way is to
a combination of low energy normal conducting (NC) accelegpply predetuning (frequency offset). When the Lorentz force
ating structures as well as higher energy superconducting Ré&tuning due to one RF pulse decays rapidly enough to allow the
(SRF) structures. In order to provide the stable cavity field sfitial values of the next RF pulse to be within a certain range,
that the beam obtains the full power from the input RF powefen the determination of the required predetuning is a relatively
the RF control systems for both the NC and SRF portions of te@sy task. However, the initial values at the beginnings of RF
linac are designed to maintain the cavity field at a specific argulses are difficult to predict [4].
plitude and phase. Another source of the resonance frequency shift is micro-
In contrast to a NC cavity, an SRF cavity is very susceptiblghonics [2]. The loade@, 1., of a SRF cavity is much higher
to the resonance frequency shift due to thin walls and highan that of a NC cavity. The resulting narrow bandwidth
loaded(). There are several sources of the resonance frequeRgakes SRF cavities more sensitive to mechanical vibrations.
shift, the major ones being the Lorentz force detuning ameavy machinery can transmit mechanical vibrations through
microphonics. the beamline, ground, supports, and cryostat to the cavity.
The RF magnetic field in a SRF cavity interacts with the RMechanical vacuum pumps can interact with the cavity through
wall current resulting in a Lorentz force, which is significanthe beam tubes. Vibrations generated by compressors and
at high accelerating fields and for a pulsed accelerator suchpfinps of the refrigerator can be transmitted to the cavity. The
an SNS or TESLA facility [1]. The radiation pressure, which igpectrum of mechanical vibrations is filtered by the transfer
proportional to the square of magnetic field intensity and accghedium and finally interacts with the cavity. In SNS, the
erating gradient, causes a small deformation of the cavity shagg@ected microphonics amplitude limit is 100 Hz and the
resulting in a shift of its resonance frequency, called Lorenggerage value is 9 Hz [5].
force detuning [2]. Lorentz force detuning influences the perfor- The Lorentz force detuning can be compensated by in-
mance of the low level RF control system due to the extra powgieasing the mechanical stiffness of the cavity by using a
needed to control an incorrectly tuned cavity. In the feedbagkechanical structure such as stiffing ring and/or by applying
loop, a klystron can be treated as an actuator with nonlinear sgtproper feedback or feedforward technique. In the TESLA
uration characteristics. The klystron should not be operatedtitility, an adaptive feedforward control with piezosensor and
its saturation region. For the SNS SRF linac in SNS, RF powgiezoactuator (tuner), has been considered for RF pulse-to-pulse
systems are designed to have 33% power control margin whicrentz force detuning compensation [6]. The control is based
is required to compensate for the Lorentz force detuning, micren experimental measurement of a SRF cavity after the cavity
is assembled. Hence, the mechanical modes of interest are
fixed and the Lorentz force detuning at the next RF pulse is
predictable with the current measured data, that is, the Lorentz
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Fig. 1. Lorentz force detuning with respect to mechanical time constants.

In SNS, as an alternative approach, a pure feedforwaadd quadrature, and measured inputs-klystron output in-phase
control based on the disturbance estimation is consideredd quadrature (or low level RF controller output in-phase and
Compared with the case when the cavity is being driven @uadrature). The computational time of the frequency shift
resonance, the frequency shift is a time varying disturbanestimator is small enough to be implemented with a digital
and elimination of disturbance’s effect is a major objectivsignal processor (DSP) in a real time manner. Based on the
in the control of industrial systems. For linear systems, mamgtimated frequency shift, a pure feedforward controller can be
approaches have been proposed to eliminate disturbance. @esigned in such a way that the (time varying) tuning frequency
introduction of the integral action is an easily consideredrequency offset), which is the negative of the estimated
method. One way to embed the integral action is to enforéequency shift, is generated.
it in the controller as is the case of a Pl controller. Another
method is to model the disturbance and design a controller Il. LORENTZFORCE DETUNING MODEL
and then the integral action arises naturally. In [7] and [8],

the Lorentz force detuning is modeled with a superpositi nThe Lorentz force detuning is an important factor of the RF
9 Perp c}requency shift in SRF cavities. Many researches have focused

of vibrations of mechanical modes in the SRF cavity angn the Lorentz force detuning modeling. The Lorentz force

a proportional-int_egre_ll derivat_i\_/e (.PID) fe_edback Contro”etgetuning is modeled as a first-order differential equation or
used for the cavity field stabilization partially compensates

for the Lorentz force detuning. When the variation rate g 2 _second—order differential equation. W_hen th? dampm_g IS
sufficiently large, then the second-order differential equation

the disturbance is large or the magnitude of the Lorentz for(r:neodel is approximated by the first-order differential equation

detuning is large, then the performance of the controller where S i L
. S . . .._even though it is difficult to obtain large damping in a SRF
the integral action is embedded is not satisfactory. Specifical lvity. With a feedback controller. the frequency shift can be
when the magnitude of the Lorentz force detuning is larg Y- : ’ q y -
compensated partially [7], [8]. However, there may be limita-
then the RF pulse-to-pulse based feedforward control may not ;
. . tion to the performance achieved by the feedback controller. For
achieve the satisfactory performance. Before the feedforw . I
control starts to work, the control system may lose its stabili S, the RF pulse repetition period is 16.667 ms (1/60 Hz). At
' y y e end of a RF pulse, the RF field constructed in a SRF cavity

unless sufficient power control margin is reserved. Hence’decays to zero with the cavity time constant much shorter than

may be necessary to design a controller which is not basedt & time between RF pulses. Hence, the Lorentz force detuning

RF pulse-to-pulse measurements but based on instantaneoHar)(ng the RF pulse off period approximately behaves as a
measuring/estimating and updating data like Kalman predﬁ-

tion. When the Lorentz force detuning model considering aflccaying oscillation, whose amp!ltude IS determm_ed by the
alues of the Lorentz force detuning and the variation rate of

domman.t mechanlcal mode frequencies is used, the contro{eé Lorentz force detuning (velocity) at the end of the current
complexity increases as well.

In order to incorporate the information on disturbances sugqF pulse, and whose d_ecay rate is determined by the damping
cor&stant of the mechanical mode.

as spectrum and magnitude to the controller, sensors are use

to measure disturba}nces directly, or .disturbance Observarsei st.order State Space Model

are designed and disturbance properties from the measured o ] ]
input—output data are estimated. In this paper, as an initiativel N Lorentz force detuning is modeled as a first-order differ-
step for a pure feedforward control, a frequency shift obsen/@ptial equation given below [1], [9]:

is proposed. The frequency shift observer yields the estimate of . 1 2

— . 2
the frequency shift with measured outputs-cavity field in-phase WL = _a“’f? + _kaFDEACC (2.1)
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where Facc is the accelerating gradient of a cavity and  Since the static Lorentz force detuning is given by

is the mechanical time constant of a cavity. The mechanical 9

time constant determines whether the Lorentz force detuning fr =krrpEice (2.5)

decays completely or not at the instance of a new RF pulsefollows from (2.4) and (2.5) that the constdnis given by

Fig. 1 shows the relation between the mechanical time con- w2 -

stant and the Lorentz force detuning during one full RF rep- b= 27rkLFD%. (2.6)

etition period (/60 Hz) for Eacc = 10.07 MV/m and for ) )

Kirp = —2.0 Hz/(MV/m)2. With the mechanical time con- NSerting (2.6) to (2.3), we obtain

stant,7,, = 1.0 msec, the .dec_ay time of the Lo'rentz'force d'e— oL+ a1or + wlwr = 2rkLepw, B2 (t). (2.7)

tuning is about 5.8 ms, which implies that there is no interaction _ ) _ ) ) )

between two consecutive RF pulses since the next RF pulse tJete that the first-order differential equation given in Sec-

curs 16.667 ms later. tion lI-A is an approximation of the above equation in the case
The first-order state space model can be used for the appren the damping constant is sufficiently large.

imation of the second-order model when the damping constanféfine

is sufficiently large. However, the numerical analysis [10], [11] 71 = wr,

show that the first-order state space model of the Lorentz force

detuning is not appropriate due to small damping constants of

the SNS SRF cavities. Then, (2.7) can be written as the formal second-order state space

equation describing the Lorentz force detuning due to a single

mechanical mode vibration

Tro = dJL = :i)l.

B. Second-Order State Space Model

The situation is complicated when the Lorentz force detuningl{:itl} B { 0, 1 } [1131} [ 0 } B2(1)
is modeled as a second-order differential equation and when @2 | ~ | —w?2,;, —a1 | |22 2wk rpw?,;
several mechanical modes exist in a SRF cavity. Detailed in- (2.8)
vestigation has been performed by Ellis [10] and Mitchell [11]. 1
Sundelin [4] has investigated the Lorentz force detuning when y=[1 0] LJ : (2.9)

the mechanical mode frequency is assumed to be 495 Hz with _ _ .

respect to mechanical quality fact@, For a mediumg SRF When multimechanical modes are _con3|der9d, the mod-
cavity in SNS, the cavity’s mechanical damping constant is ve?)l/ng ,Of the Lorentz. force detun_mg 1S complicated. Crogs

small and so the developed Lorentz force detuning does r%)tuphng_of mechanical mode vibrations must_ be consid-

decay before the next RF pulse comes. ered. This means that the Lorentz force detuning constants

As was mentioned in [4], for the small damping constant, tfaLrp: ¢ = 1,2,...,m, for each mechanical mode are dis-

swing of the developed Lorentz force detuning is 2 times thg{buted with certain conditions, and boundary conditions of the

of the static Lorentz force detuning, i.6% = 2kprp B2 . second-order differential equations for each mechanical mode

Hence, the power control margin estimation and the cavity fieﬂfed to be assigned properly. Details are addressed in [8].

stabilization are much more complicated tasks. For a mechan-
ical mode frequency,,,,;, a second-order differential equation!!!- SUPERCONDUCTINGRF CAVITY MODEL AND FREQUENCY
defines the Lorentz force detuning SHIFT MODEL

A SRF cavity is given by the state space model [1], [12]

Or + arwr, + wlwr = bV (2.2)
2=A,(Aw)z+ B,u+ B.rI (3.1)
thereb is a weighting parameter to be specified in the following y=C.z (3.2)
an
w2, (k/m); where
a1 2Cwm; _ '—Ti —Aw
m  general mass; Ax(Aw) = i Aw —L
k stiffness constant; (26 —Zecs]
. i B. = Z, Zo
¢ damping constant; 2 Zes  Ze
V  cavity voltage. 5 ¢ Z%c C-
Since the cavity voltag®'(¢) and the accelerating electric field B.r = —20‘1C _22 C] (3.3)
E(t) are expressed a&(t) = [- E(t), I: cavity length, (2.2) can Lo 15
be written as c. |10 P N e Y
# _0 1|’ _22 VQ
Or + a1 + w2 wr = bIPE*(t). (2.3) 'ul} {Vﬂ } ; {]I ]
u = = =
| u2 Viq 1o

The static Lorentz force detuning can be obtained by settin%
. . and
wr, = 0 andwy, = 0 of (2.3)
Aw = Awp + Awp, + Awnicp
bl2 RCU RC’U

_ 2 2 _ L
Wwrss = wgﬂ EACC' (2-4) 1 = r C3 = QQOT

(3.4)
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and z1
Awp predetuning frequency against beam y=1[C. 0| 22 |. (3.10)
loading [rad/s]; Aw
Awrp, Lorentz force detuning [rad/s];
Awyicp microphonics [rad/s]; IV. FREQUENCY SHIFT OBSERVERS
7=(2Q,/w,) unloaded cavity darr_1pm_g time constant [S]A_ First-Order State Space Model
7.=(2Q1/w,) loaded cavity damping time constant [s]; - _ _
Q. cavity resonator unloaded quality factor; ~ The fr_eguency shiftis merIed asgivenin (3:8) Ifan _observgr
W, cavity resonance frequency [rad/s]; has sufficiently fast dynamics as compared with the time vari-
Rew resistance of the Equivalent circuit ofations of the Lorentz force detuning and microphonics, the ob-
cavity transformed to RF generatl]; server can estimate the frequency shift due to the Lorentz force
Z, transmission line characteristic impedancé€tuning, microphonics, and p_redetuning against beam loading.
[ For the augmented system given by (3.9)—(3.10), a full-order
¢ transformation ratio; observer is proposed [13]
Vir, Vig forward In-phase (I) and quadratu(€) . - L 0
V; 21 0 0 -y 2 TI
; - =10 0 2 |+ 1|
It Ig beam currentin In-phase (I) and quadraturg¢ <2 Y1 2 0 —— |y
Vi, Vo cavity field in-phase (1) and quadratur@) - 9 9 A
[VI]. - ¢
Note that since&), ~ 10° ~ 10'°, ¢5 ~ 0. In the above model, + Z20 QZ" U
Aw is the sum of the predetuningdwg, the Lorentz force A A W
detuning, Aw;,, and microphonicsAwyicp. The state space I 0 0 |
model given by (3.1)—(3.2) can be written by ) 2
Awys 7. c1 7, C3 T
2=A,,z+B,u+ B,rI + (3.5) + 1 2 2 1
Awyq —c —c U
A | U2 |
y=0C.z (3.6) I ‘6 ‘6 |
where " Z1
) + Kiob (Y1, Y2, u1, uz) [ } —[C. 0] 2
A —{_TT 0 ] 3.7) - AG
Tl b ' (4.1)

The objective of this paper is to design an observer such that ¥REre £ (y1. y2, u1, u2) is a nonlinear observer gain matrix.
estimateAs yielded by the observer exponentially approaches P€fine the observer error as

the frequency shif\w. As mentioned in the previous section, L A1 “ 49
when the Lorentz force detuning model includes all mechan- €= AZ2 B AZ% ) (4.2)
w w

ical mode dynamics, the observer structure may be complicated 4L
and computational complexity increases. Instead of this coh® observer error dynamics is given by

plex higher order model, the frequency shift is modeled as , 00 -y
e=10 0 Y1 é_Kfob(yl7y27u17u2)
Aw = 0. (3.8) 00 0

disturbance. The augmented state space model is with outputs, Z2

The model (3.8) is widely used for constant or slowly varying y 2 B
X |:(1:|_[Cz 0] +|:z:|I
Y1, y2 and inputsuz, us Ad

Y2

4 00 -] [ = (00 -]
. _ =10 0 w1 |é— Kby, yz,u1,u2)
z9 = 0 0 U1 z9
Ad 00 0 |]|Aw 000
'_% 0 x [C, 0]é+[851}1
L [y
9 2 =110 0 y1 | = Keb(yr,y2,u1,u2)[C. 0] &
Lo o0 00 0
r 2 2 -
Z—Cl —Z—C3 + |:le:| I
R [“1} [BSI}I (3.9)
—c3 —cC1 U2 B
7, 7, = Appe s | Bot
B o _Afobe+{ i ]I. (4.3)
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The gain matrixKs,,(y1, y2, u1, us) is designed so that the ma-where
trix Agp is Hurwitz stable. The assignability of the poles4yf;,

Klrob(y17y27u17u2) (4 9)
is given by the (local) observability gt , i7» which is character- ’ '

Ko (Y1, Y2, u1, u2) = |:K2rob(y1;y27u1>u2)

ized by the observability matrix [13], [14] Define the estimate error as
Iryo  Oaxi ||| 2
X y>1< é [Aw AG | (4.10)
O2x2 Yo Then, the estimate error dynamics is given by
Wobsv(y1,92) = | ¢ 0 |- (4.4) . J0 wm]. [ %
€= _0 '0_ e_KTOb(yhyQ?ul?uz) y_C Ao
0 0 n [—2c3s  —2ci6]| [ Ir ]
Whenever W (y1,72) has full rank at yi,z, then . O 0 | llg]
the augmented system is locally observable. Since [0 y;]. K O
rank Wobsy (y1,52)) = 2+ 1 = 3, the augmented systemis ~ |0 0 |~ rob (Y1, Y2, 1, U2) C'e
observable and the poles df,;, can be assigned arbitrarily. [—2¢5c —2¢1¢1 [ 1]
When beam is not loaded = 0), the observer error dy- + 0 0 Io
namics (4.3) is reduced to - 0 - B
&= Agpé. = [0 %1} - Krob(y17y27u17u2)0:| é
Hence, the estimate error converges to zero&ads the es- T —2c3¢ —2c16 | [I;]
timate of the lumped su\wp + Awr, + Awyicp. When beam + 0 0 Io
isloaded I # 0), since the frequency shift due to beam loading ) —9es¢ '_2'c g'— T
is asymptotically cancelled out by the predetuning, s, the = Apopt + { 03 0 ! I(; (4.11)
observer error dynam|cs. (4.3) asymptotically approaches to Since the reduced augmented éystem is locally observable, the
€ = Agpé poles of the matrixA,,}, are arbitrarily assignable. Le{ and

and the estimate error converges to zero Andis the estimate 72 be stable desired poles df.;,. Since
of the lumped sumAwr, + Awyicp- s — Hg ?61} _ Kmh(yl,y27u17u2)0:|

B. Reduced-Order Observer = 5"+ K11ob (Y1, Y2, u1, u2) s+ Ko ron (Y1, Y2, u1, u2)yr - (4.12)
The full-order observer uses all state variables of the au@e observer gains are given by
mented system and as a result the observer has the dimension

. . ) . Kirob(y1, Y2, w1, ug) = — 4.13
3. Itis possible to build a reduced order observer if the number trob (Y1, Y2, 1, 2) Tl(f:zl *r2) (4.13)
of the state variables of the original system, 2 is strictly greater Koo (Y1, Y2, u1, u2) = o (4.14)
thgr_m the number of_the _dlsturbanneu to be estimated 1. The By choosing; andr, properly, the speed of the observation is
minimal order possible is 2= 2 - 1). determined.

Define the augmented state vector as When beam is not loaded = 0), the observer error dy-
v = [zz ] ‘ (4.5) namics (4.11) is reduceq to
w é= Arobé~

The reduced augmented system is given by Hence, the estimate error converges to zero/fds the es-

29 0 1 29 0 1 m timate of the lumped sundw g + Awy, + Awnicp. When beam
{Aw} = [0 0} {Aw] + [ } isloaded T # 0), since the frequency shift due to beam loading

Y2
BN 9 00 is asymptotically cancelled out by the predetuning,z, the
y |z Fa [ul] observer error dynamics (4.11) asymptotically approaches to
L (6 (6 U2 é = 141‘0‘!)é
[ —2¢s5¢ =216 [ Iy 46 and the estimate error converges to zero Addis the estimate
+ 0 0 Io (4.6) of the lumped sumAwr, + Awyicp-
y=0C AZ? } =[1 0] AZ? } ) (4.7) C. Nonlinear First-Order Observer
w w
Define a reduced 6rder observer a-s follows: The reduced observer given by (4.8) estimates both the state
§ A - 1 zo and the frequency shifw. However, the state, is the
[ Z‘{] — [0 yl} [ Z‘{} + 0 T [i‘ll} outputys and, hence, it is unnecessary to include the estimate
Aw 0 0] [Aw 0 0 Y2 %5 in the observer. In this section, a pure disturbance observer,
2 2 - frequency shift observer, is proposed.
+|Z.® Zz9 " } Consider the state equation for the cavity field quadrafre
0 0 | LU . 1
Zo = y1Aw — —29 + —-c3uy + —-Ccrug

_ = 22 TL Z(7 Zo
+ Kiob (Y1, Y2, 11, u2) <7J -C [A&J]) (4.8) —2¢a6l — 2c161g. (4.15)
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Equation (4.15) is written as and when beam is loaded, it reduces to
. 1 2 2 . 1 2 2
y1Aw = 2o + Ezg — Z—003u1 — Z—oclu2 + 2c3¢I1 + 2c161g. Y1Aw = Z9 + 522 — 2—003u1 — Z_001u2
(4.16) Aw = Awr, + Awnicp. (4.24)
Consider the term2cssI; + 2c161 of the right-hand side of  For the frequency shift estimation, a disturbance observer is
(4.16). It follows that proposed as follows:
. ; 1 2 2
2¢3¢d + 2161 Ao = —Ly1 A&+ L <22 + —29 — —c3uy — _clu2> .
=2 Feu V—I cos(¢s) + 2Rcu EI sin(¢s) L Zo Zo
T 2rQ, vyt i v T (4.25)
_ o Wo 1 Vf2 EI cos() It follows from (3.8) and (4.25) that the observer error dynamics
- 72Q,2Q, 2P, Vs b 3 is given by

2 .
o V - [ X
LoY ——Ib81n(¢s) é=Aw— Aw
2Q0 2Pcu Vf ~ . 1 2 2
=Ly Aw — L 29+ —29 — —c3u; — —cius
w1 Ve Ve, v Ve I TL Zo Z,
= 50,30, B, s (0)Vi + g Tosin(@a)Vs — Ly AG - Ly Aw
o 1 P o By - _
= 0,30, 7V a0, B eV Lune. (4.20)
oo e o Feu The observer gairl, is determined so that the characteristic
_we B (L (65) ) V. (4.17) equation
T 2Q, P \2Q, ) '
whereV; is the forward voltage desired for the cavity field am- s+ Ly =0 (4.27)

plitude, P.,, is the wall power dissipatiorf}, is the beam power,
V., is the design cavity voltage, aid is the synchronous phase
Since@, > 1 and(Py/P.,) =~ [ for a SRF cavity, (4.17) re-

has a desired root in the left half plane of the complex domain.
The observer error dynamics (4.26) shows that for a properly
chosen gainl,, the estimateAw asymptotically converges to

duces to w Awp + Awr, + Awyicp When beam is unloaded, andAavr, +
2¢3611 + 2¢16lg = ﬁ tan(¢s) V. (4.18) Awycp When beam is loaded.
) ) L _ The observer (4.25) is difficult to implement practically be-
Consider the predetuning frequenty . Since cause the derivative ters is noisy and is hard to measure. A
Awp filter whose transfer function iés/es + 1) wheree is a small

tan(y) = 2Q1, Wo (4.19) constant can be used to approximate the derivative. In this paper,

wherey is the detuning angle due to the beam loading and sin@deWw variable is introduced

the beam loading factgt > 1 for a SRF cavity, it is given by gL = Ad — p(2z2) (4.28)
tan(y) = 3 — 1 tan(¢s) = tan(eps). (4.20) wherep(z2) is a nonlinear function o, to be determined as
follows.
It follows from (4.19) and (4.20) that The derivative of (4.28) with respect to time is
w
Awp = y; —— tan(os). 4.21 . . 0p(z2) dz
Y1AwB y12QL (¢s) ( ) G = Ad — 3(222)(1_;

Now consider (4.18) and (4.21). When the cavity operates on 1 9
resonance with a generator and the cavity field is settled down =Ly Av+ L <éz + —22 — 7 G
to the neighborhood of the desired values, then the imaginary 5 5 L °
part of the cavity fieldys,, is close to zero, which yieldg; ~ ——c1u2> _ 9p(z2) %o
VY2 +y3 ~ y;. Therefore, Zo 022 . )

y1Awp = 2c3¢lt + 2c161g (4.22) =—-Lygr + L (Zz + EZQ - Z—Csul
and (4.16) can be written as 2 On(z
1 2 2 _Z_clu2 - ylp(22)> - g(z 2) Z2. (429)
Y1Aw = 2o + —29 — Gl = —-C1ly °
7L ° ° Whenp(z2) is determined so that it satisfies

whereAw = Awr, + Awnicp. 9 (Z )

In summary, it follows from (3.4) and (4.22) that (4.16) has g 2 =L (4.30)
two forms depending upon whether beam is loaded or not. When 22
beam is unloaded, (4.16) reduces to then (4.29) reduces to

. 1 2 2 5 N 1 2
1 Aw = 2o + EZ'Z - Z—Ocsul - Z—001U2 gr = —Lygr + L (EZQ - Z_OCBUI - Z—OCIU2 - y1p(22)>

Aw = Awp + Awr, + Awnicp (423) (431)
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Fig. 2. Observer performances for the Lorentz force detuning in [3]. For the reduced obsereer, = 6.2832¢4 are used and for the nonlinear first-order
observer] = 6.2834¢4 is used. Microphonics is not included in the model.

and the Lorentz force detuning estimate is given by posed observer do not need to be turned off and it can estimate
A frequency shift. As mentioned in [10], the dominant frequencies
AG = g1+ p(z2). (432) o the mechanical modes for the mediyrBRF section exist
It is easily verified that the observer error dynamics is given hyp to 2.0 kHz and the dominant frequencies of microphonics
. . R . Op(z2) dzs are within a few hundred Hertz. For satisfactory performance of
e=Aw—Aw=—gp — 0 Al —Lyie.  (4.33) the observer, the sampling frequency of the observer must be at

least 20 kHz. The simple Euler method is used for the discretiza-

an of the observers and the reduced observer and the nonlinear
§t-order observer are simulated in the MATLAB/SIMULINK

[15] environment.

I l Fig. 2 shows the observer performances where the Lorentz
= — (4.34) . i )

Y1 force detuning of a single mechanical mode of frequency
r4?4'73 Hz [4], predetuning against beam loading, and beam
I%ading yield frequency shift. Fig. 2 illustrates that the non-
linear first-order observer yields better performance over

é4+le=0 (4.35) the reduced order observer. The sampling frequency of both
observers is 40 kHz. Note that in Fig. 2, during the cavity
and the convergence rate can be specified by the parafetsilling time (RF pulseoN, beamoFrF), the sum of the Lorentz

The estimateAw approaches the frequency shifto if L is
chosen such that (4.33) is asymptotically stable. One possi
solution for L is

wherel is a positive constant. In this case, the observer er
dynamics becomes

From (4.30), the correspondingz,) becomes force detuning and the predetuning against beam loading,
l Afp = (fo/2QL)(B — 1/8 + 1)tan¢s = —222.5 Hz, is
p(22) = y—lz‘z- (4.36)  estimated. During the beam loading period (RF putse

beamoN), the predetuning frequency is cancelled out by beam
loading and the observers estimate the Lorentz force detuning.
Fig. 3 shows the simulation results where microphonics is
In the previous section, three frequency shift observers haagditionally included in the model. During the cavity filling
been proposed. For SNS, an observer is to be used together witte (RF pulseoN, beamorF), the sum of the Lorentz force
the piezoactuator in order to compensate for the frequency shiétuning, microphonics, and the predetuning against beam
in a SRF cavity. The chosen observer is implemented with a D&Rding, is estimated. During the beam loading period (RF pulse
and so the observer should be as simple as possible for the mglbeamon), the predetuning is offset by beam loading and
time implementation provided with satisfactory performance. bhe observers estimate the sum of the Lorentz force detuning
addition, the observer is turned on when the RF is turned on aanatd microphonics. Fig. 4 shows the simulation results where
is turned off when RF is turned off. During the RF turn off pethe Lorenz force detuning as addressed in [10] is considered.
riod, the cavity field control is turned off and hence, the in-phade this simulation, microphonics is not included.
and quadrature of cavity field are difficult to predict. If their be- The discretized observers are sensitive to both the observer
haviors during the RF off period are the solutions of the stabjgins and the sampling frequency. For a fixed sampling fre-
first-order differential equations with zero inputs, then the prajuency of 40 kHz, in order to investigate the observer perfor-

V. SIMULATIONS AND EXPERIMENTS
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Fig. 3. Observer performances for the Lorentz force detuning in [3]. For the reduced obsereer,, = 6.2832¢4 are used and for the nonlinear first-order
observer] = 6.2834¢4 is used. Microphonics is included in the model.
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Fig. 4. Observer performances for the Lorentz force detuning in [8]. For the reduced obsereer,, = 6.2832¢4 are used and for the nonlinear first-order
observer] = 6.2834¢4 is used. Microphonics is not included in the model.

mances with respect to observer gains, differgnt, and/ are Jefferson National Laboratory, so real data is not yet available.
applied. Fig. 5 shows this simulation results, which illustratat Los Alamos National Laboratory, extensive modeling and
that the reduced order observer is more sensitive to the obsesigrulation with MATLAB/SIMULINK for a SRF cavity has
gain change than the nonlinear first-order observer. When theen performed [17]. For the observer performance investiga-
sampling frequency is increased, higher observer gains cantioa, SIMULINK simulation data of the klystron output I/Q and
used and observers guarantee fast responses with initial fastadesty field I/Q were used and the observer was implemented in
caying oscillation. a TMS 320C6201 EVM.

Considering the simulation results, the nonlinear first-order Fig. 6 shows the experiment result of the nonlinear
observer is chosen for the frequency shift observer of a SRst-order observer where the Lorentz force detuning results
cavity. The observer is implemented in a TMS320C6201 evdfom a 494.73-Hz-single-mechanical-mode vibration [4]. Fig. 7
uation module (EVM) [16], which includes an A/D converteshows the result of the nonlinear first-order observer where
(ADC) and a D/A converter (DAC). The clock speed of the DSEhe Lorentz force detuning results from 29 mechanical mode
is 133 MHz and the sampling frequency of the ADC and DAC igibrations [10]. For one data sample, the computational time
40 kHz. Currently, a prototype SRF cavity is being developedwags 21 CPU clock cycles. When 200 MHz CPU clock is used
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Fig. 6. DSP implementation result for nonlinear first-order observer performance experiment for the Lorentz force detuning in [3]. For thefitstibnéer
observer] = 6.2834¢4 is used. Microphonics is included in the model. The RF pulse ON period is 1.3 ms and the sampling frequency is 40 kHz. Hence, the total
data points during one RF pulse are 52.

for the DSP, the computational time is 0.Lk. Hence, the can be applied to estimate microphonics when it is determin-
sampling frequency should be less than 9.5 MHz. With thistic. However, when microphonics is driven by stochastic noise
sampling frequency, observer gains can be determined so apracesses, the deterministic frequency shift can be estimated by
guarantee fast response of observers. applying Kalman estimation technique [18].

Numerical analysis addressed in [10] shows that the distri-
bution of mechanical mode frequencies is up to a few thou-
sand Hertz. However, the dominant mechanical mode vibrations
which contribute to the Lorentz force detuning result from the In this paper, three deterministic disturbance observers
several low frequencies. Hence, the proposed deterministic dlave been proposed to estimate the frequency shift in a SRF
servers can be applied to estimate the Lorentz force detuningvity. Through computer simulations, the performances of
Additionally, the frequencies of microphonics reported in [6] arlhe observers were investigated and the appropriate observer
less than a few hundred Hertz. Hence, the proposed obsenfersthe real time implementation in a DSP was chosen. The

VI. CONCLUSION
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Fig. 7. DSP implementation result for nonlinear first-order observer performance experiment for the Lorentz force detuning in [8]. For thefirshbnéer
observer] = 6.2834¢4 is used. Microphonics is not included in the model. The RF pulse ON period is 1.3 ms and the sampling frequency is 40 kHz. Hence, the
total data points during one RF pulse are 52.

selected observer, nonlinear first-order observer, is simple and7] C. Tsukishima, K. Mukugi, Y. Kijima, T. Murai, N. Ouchi, E. Chishiro,
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