Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuum of quantum fluctuations in a three-dimensional S = 1 Heisenberg magnet

Abstract

Conventional crystalline magnets are characterized by symmetry breaking and normal modes of excitation called magnons, with quantized angular momentum ħ. Neutron scattering correspondingly features extra magnetic Bragg diffraction at low temperatures and dispersive inelastic scattering associated with single magnon creation and annihilation. Exceptions are anticipated in so-called quantum spin liquids, as exemplified by the one-dimensional spin-1/2 chain, which has no magnetic order and where magnons accordingly fractionalize into spinons with angular momentum ħ/2. This is spectacularly revealed by a continuum of inelastic neutron scattering associated with two-spinon processes. Here, we report evidence for these key features of a quantum spin liquid in the three-dimensional antiferromagnet NaCaNi2F7. We show that despite the complication of random Na1+–Ca2+ charge disorder, NaCaNi2F7 is an almost ideal realization of the spin-1 antiferromagnetic Heisenberg model on a pyrochlore lattice. Magnetic Bragg diffraction is absent and 90% of the neutron spectral weight forms a continuum of magnetic scattering with low-energy pinch points, indicating NaCaNi2F7 is in a Coulomb-like phase. Our results demonstrate that disorder can act to freeze only the lowest-energy magnetic degrees of freedom; at higher energies, a magnetic excitation continuum characteristic of fractionalized excitations persists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equal-time structure factor in NaCaNi2F7.
Fig. 2: Inelastic neutron scattering showing dynamic magnetic correlations in NaCaNi2F7.
Fig. 3: Momentum- and energy-resolved inelastic neutron scattering probing magnetic excitations in NaCaNi2F7.
Fig. 4: Specific heat and elastic neutron scattering revealing spin freezing in NaCaNi2F7.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Villain, J. Insulating spin glasses. Z. Phys. B 33, 31–42 (1979).

    Article  ADS  Google Scholar 

  2. Harris, A. B., Berlinsky, A. J. & Bruder, C. Ordering by quantum fluctuations in a strongly frustrated Heisenberg antiferromagnet. J. Appl. Phys. 69, 5200–5202 (1991).

    Article  ADS  Google Scholar 

  3. Canals, B. & Lacroix, C. Pyrochlore antiferromagnet: A three-dimensional quantum spin liquid. Phys. Rev. Lett. 80, 2933–2936 (1998).

    Article  ADS  Google Scholar 

  4. Canals, B. & Lacroix, C. Quantum spin liquid: The Heisenberg antiferromagnet on the three-dimensional pyrochlore lattice. Phys. Rev. B 61, 1149–1159 (2000).

    Article  ADS  Google Scholar 

  5. Moessner, R. & Chalker, J. T. Properties of a classical spin liquid: The Heisenberg pyrochlore antiferromagnet. Phys. Rev. Lett. 80, 2929–2932 (1998).

    Article  ADS  Google Scholar 

  6. Moessner, R. & Chalker, J. T. Low-temperature properties of classical geometrically frustrated antiferromagnets. Phys. Rev. B 58, 12049–12062 (1998).

    Article  ADS  Google Scholar 

  7. Isakov, S. V., Gregor, K., Moessner, R. & Sondhi, S. L. Dipolar spin correlations in classical pyrochlore magnets. Phys. Rev. Lett. 93, 167204 (2004).

    Article  ADS  Google Scholar 

  8. Henley, C. L. Power-law spin correlations in pyrochlore antiferromagnets. Phys. Rev. B 71, 014424 (2005).

    Article  ADS  Google Scholar 

  9. Henley, C. L. The Coulomb phase in frustrated systems. Annu. Rev. Condens. Matter Phys. 1, 179–210 (2010).

    Article  ADS  Google Scholar 

  10. Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415–417 (2009).

    Article  ADS  Google Scholar 

  11. Isoda, M. & Mori, S. Valence-bond crystal and anisotropic excitation spectrum on 3-dimensionally frustrated pyrochlore. J. Phys. Soc. Jpn 67, 4022–4025 (1998).

    Article  ADS  Google Scholar 

  12. Moessner, R., Sondhi, S. L. & Goerbig, M. O. Quantum dimer models and effective Hamiltonians on the pyrochlore lattice. Phys. Rev. B 73, 094430 (2006).

    Article  ADS  Google Scholar 

  13. Huang, Y., Chen, K., Deng, Y., Prokof’ev, N. & Svistunov, B. Spin-ice state of the quantum Heisenberg antiferromagnet on the pyrochlore lattice. Phys. Rev. Lett. 116, 177203 (2016).

    Article  ADS  Google Scholar 

  14. Tchernyshyov, O., Moessner, R. & Sondhi, S. L. Order by distortion and string modes in pyrochlore antiferromagnets. Phys. Rev. Lett. 88, 067203 (2002).

    Article  ADS  Google Scholar 

  15. Conlon, P. H. & Chalker, J. T. Absent pinch points and emergent clusters: Further neighbor interactions in the pyrochlore Heisenberg antiferromagnet. Phys. Rev. B 81, 224413 (2010).

    Article  ADS  Google Scholar 

  16. Lee, S.-H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

    Article  ADS  Google Scholar 

  17. Kamazawa, K., Park, S., Lee, S.-H., Sato, T. J. & Tsunoda, Y. Dissociation of spin objects in geometrically frustrated CdFe2O4. Phys. Rev. B 70, 024418 (2004).

    Article  ADS  Google Scholar 

  18. Chung, J.-H. et al. Statics and dynamics of incommensurate spin order in a geometrically frustrated antiferromagnet CdCr2O4. Phys. Rev. Lett. 95, 247204 (2005).

    Article  ADS  Google Scholar 

  19. Tomiyasu, K. et al. Molecular spin resonance in the geometrically frustrated magnet MgCr2O4 by inelastic neutron scattering. Phys. Rev. Lett. 101, 177401 (2008).

    Article  ADS  Google Scholar 

  20. Bellier-Castella, L., Gingras, M. J. P., Holdsworth, P. C. W. & Moessner, R. Frustrated order by disorder: The pyrochlore anti-ferromagnet with bond disorder. Can. J. Phys. 79, 1365–1371 (2001).

    Article  ADS  Google Scholar 

  21. Saunders, T. E. & Chalker, J. T. Spin freezing in geometrically frustrated antiferromagnets with weak disorder. Phys. Rev. Lett. 98, 157201 (2007).

    Article  ADS  Google Scholar 

  22. Arnab Sen & Moessner, R. Topological spin glass in diluted spin ice. Phys. Rev. Lett. 114, 247207 (2015).

    Article  ADS  Google Scholar 

  23. Gardner, J. S. et al. Glassy statics and dynamics in the chemically ordered pyrochlore antiferromagnet Y2Mo2O7. Phys. Rev. Lett. 83, 211–214 (1999).

    Article  ADS  Google Scholar 

  24. Silverstein, H. J. et al. Liquidlike correlations in single-crystalline Y2Mo2O7: An unconventional spin glass. Phys. Rev. B 89, 054433 (2014).

    Article  ADS  Google Scholar 

  25. Krizan, J. W. & Cava, R. J. NaCaCo2F7: A single-crystal high-temperature pyrochlore antiferromagnet. Phys. Rev. B 89, 214401 (2014).

    Article  ADS  Google Scholar 

  26. Krizan, J. W. & Cava, R. J. NaCaNi2F7: A frustrated high-temperature pyrochlore antiferromagnet with S = 1 Ni2+. Phys. Rev. B 92, 014406 (2015).

    Article  ADS  Google Scholar 

  27. Sanders, M. B., Krizan, J. W., Plumb, K. W., McQueen, T. M. & Cava, R. J. NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7: novel single crystal pyrochlore antiferromagnets. J. Phys. Condens. Matter 29, 045801 (2017).

    Article  ADS  Google Scholar 

  28. Coldea, R. et al. Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2d frustrated quantum magnet Cs2CuCl4. Phys. Rev. Lett. 88, 137203 (2002).

    Article  ADS  Google Scholar 

  29. Ross, K. A., Savary, L., Gaulin, B. D. & Balents, L. Quantum excitations in quantum spin ice. Phys. Rev. X 1, 021002 (2011).

    Google Scholar 

  30. Hohenberg, P. C. & Brinkman, W. F. Sum rules for the frequency spectrum of linear magnetic chains. Phys. Rev. B 10, 128–131 (1974).

    Article  ADS  Google Scholar 

  31. Conlon, P. H. & Chalker, J. T. Spin dynamics in pyrochlore Heisenberg antiferromagnets. Phys. Rev. Lett. 102, 237206 (2009).

    Article  ADS  Google Scholar 

  32. Zhitomirsky, M. E. & Chernyshev, A. L. Colloquium: Spontaneous magnon decays. Rev. Mod. Phys. 85, 219–242 (2013).

    Article  ADS  Google Scholar 

  33. Ross, K. A., Krizan, J. W., Rodriguez-Rivera, J. A., Cava, R. J. & Broholm, C. L. Static and dynamic XY-like short-range order in a frustrated magnet with exchange disorder. Phys. Rev. B 93, 014433 (2016).

    Article  ADS  Google Scholar 

  34. Ramirez, A. P., Hessen, B. & Winklemann, M. Entropy balance and evidence for local spin singlets in a kagome-like magnet. Phys. Rev. Lett. 84, 2957–2960 (2000).

    Article  ADS  Google Scholar 

  35. Nakatsuji, S. et al. Spin disorder on a triangular lattice. Science 309, 1697–1700 (2005).

    Article  ADS  Google Scholar 

  36. Bergman, D., Alicea, J., Gull, E., Trebst, S. & Balents, L. Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets. Nat. Phys. 3, 487–491 (2007).

    Article  Google Scholar 

  37. Halperin, B. I. & Saslow, W. M. Hydrodynamic theory of spin waves in spin glasses and other systems with noncollinear spin orientations. Phys. Rev. B 16, 2154–2162 (1977).

    Article  ADS  Google Scholar 

  38. Podolsky, D. & Kim, Y. B. Halperin–Saslow modes as the origin of the low-temperature anomaly in NiGa2S4. Phys. Rev. B 79, 140402 (2009).

    Article  ADS  Google Scholar 

  39. Lee, S.-H. et al. Less than 50% sublattice polarization in an insulating S = 3/2 kagome antiferromagnet at T ≈ 0. Phys. Rev. B 56, 8091–8097 (1997).

    Article  ADS  Google Scholar 

  40. Reimers, J. N., Berlinsky, A. J. & Shi, A.-C. Mean-field approach to magnetic ordering in highly frustrated pyrochlores. Phys. Rev. B 43, 865–878 (1991).

    Article  ADS  Google Scholar 

  41. Elhajal, M., Canals, B., Sunyer, R. & Lacroix, C. Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky–Moriya interactions. Phys. Rev. B 71, 094420 (2005).

    Article  ADS  Google Scholar 

  42. Chern, G.-W., Moessner, R. & Tchernyshyov, O. Partial order from disorder in a classical pyrochlore antiferromagnet. Phys. Rev. B 78, 144418 (2008).

    Article  ADS  Google Scholar 

  43. Brown, P. J. International Tables for Crystallography (ed. Prince, E.) 454–461 (Springer, Berlin, 2006).

  44. Rodriguez, J. A. et al. MACS a new high intensity cold neutron spectrometer at NIST. Meas. Sci. Technol. 19, 034023 (2008).

    Article  ADS  Google Scholar 

  45. Zaliznyak, I. A. et al. Polarized neutron scattering on HYSPEC: the hybrid spectrometer at SNS. J. Phys. Conf. Ser. 862, 012030 (2017).

    Article  Google Scholar 

  46. Arnold, O. et al. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article  ADS  Google Scholar 

  47. Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn 65, 1604–1608 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Wan for enlightening discussions. This work benefited from many discussions with, and insights passed by, O. Tchernyshyov. We would also like to thank R. Moessner, J. Chalker and S. Todadri for critical reading of this manuscript. Work at the Institute for Quantum Matter was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering under grant DE-FG02-08ER46544. A.S. and C.B. were funded by the Gordon and Betty Moore Foundation under the EPIQS program GBMF no. 4532. Access to MACS was provided by the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under Agreement No. DMR-1508249. A portion of this research used resources at the Spallation/Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. This work was supported by the Paul Scherrer Institut by providing the supermirror analyser as a temporary loan to Oak Ridge National Laboratory. We gratefully acknowledge the Johns Hopkins Homewood High Performance Cluster (HHPC) and the Maryland Advanced Research Computing Center (MARCC), funded by the State of Maryland, for computing resources.

Author information

Authors and Affiliations

Authors

Contributions

K.W.P., A.S., B.W., J.A.R. and Y.Q. performed the neutron scattering experiments. K.W.P. performed the specific heat measurements and analysed all experimental data. J.W.K. and R.J.C. synthesized and characterized the single-crystal sample. H.J.C and S.Z. performed Monte Carlo simulations and self-consistent Gaussian approximation calculations, along with assisting with the theoretical interpretation. K.W.P., C.L.B. and H.J.C. wrote the manuscript with input from all co-authors. C.L.B. oversaw all aspects of the project.

Corresponding author

Correspondence to K. W. Plumb.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Text, Figures 1–5 and References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plumb, K.W., Changlani, H.J., Scheie, A. et al. Continuum of quantum fluctuations in a three-dimensional S = 1 Heisenberg magnet. Nature Phys 15, 54–59 (2019). https://doi.org/10.1038/s41567-018-0317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0317-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing