Skip to main content
SHARE
News

Neutrons – Hard diamonds, high pressures

  • ORNL researchers Reinhard Boehler, left, and Bianca Haberl demonstrate the improved pressure cell developed by Boehler. The device uses two gem-quality synthetic opposing diamonds to exert extreme pressures on materials. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

  • The pressure cell uses two gem-quality synthetic opposing diamonds to exert extreme pressures on materials, providing fundamental insights into materials that only neutrons can reveal. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

  • ORNL researchers Reinhard Boehler, left, and Bianca Haberl demonstrate the improved pressure cell developed by Boehler. The device uses two gem-quality synthetic opposing diamonds to exert extreme pressures on materials. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

  • The pressure cell uses two gem-quality synthetic opposing diamonds to exert extreme pressures on materials, providing fundamental insights into materials that only neutrons can reveal. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory’s Spallation Neutron Source have developed a diamond anvil pressure cell that will enable high-pressure science currently not possible at any other neutron source in the world.

Using the SNAP instrument, the team measured high-quality powder diffraction data on a material above 120 gigapascals, shattering the previously held record of 62 GPa for meaningful structural data.

What’s more, the tiny submillimeter-sized sample used in the experiment is likely the smallest neutron sample ever measured and yet is also one of the largest powder samples ever held at such a high static pressure.

While scientists have used X-ray powder diffraction at such pressures for decades, it was previously not possible using neutrons.

“This breakthrough enables new studies on the structures of high-pressure super-hydrides that exhibit room-temperature superconductivity. It even enables investigations into materials at earth-core pressure conditions,” said ORNL’s Bianca Haberl.