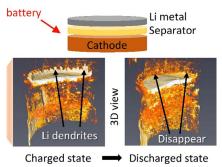
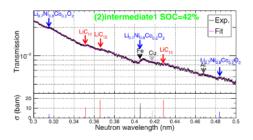
Neutron Imaging Meets the 3-Source Strategy


Advanced studies of battery defects and failure mechanisms

- Optimization of neutron imaging across our 3 sources enables real-time observation of how batteries break down during operation across a broad range of length scales
- Providing complete and unprecedented assessments of dynamic phenomena inside battery components

VENUS will leverage time-of-flight


HFIR:

HFIR enables 3D tomography of charge-discharge processes captured during real-time battery cycling

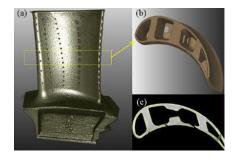
SNS:

capabilities of the pulsed-beam accelerator for unique insights into phase transformation behaviors during cycling (via Bragg-edge imaging)

Kino et al, Solid State Ionics (2016).

STS:

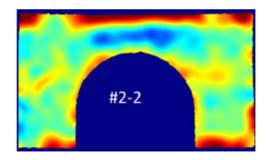
The high volume of specialized cold neutrons at STS will enable extraordinary kinetic measurements of combined phase and defects at the nanoscale


Song et al, ACS Energy Letters, 2019.

Neutron imaging reveals defects in Additively Manufactured (AM) alloys

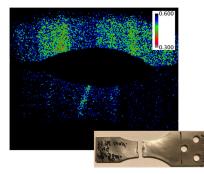
- Complete structural and mechanical behavior analysis using our 3 neutron sources
- Bolsters advanced modeling performed in academia and industry

HFIR:


3D mapping of component structure and defects at 50 microns

Bilheux et al, AMP/ASNT, 2016.

SNS:


Strain mapping of thermal and mechanical stresses during slow processes in the tens-of-minutes range

Tremsin et al, Additive Manufacturing, 2021.

STS:

Combined 3D mapping of strain and defects, from tens of nanometers to a few microns, all captured in less than 1 minute

Brooks et al., Materials and Design 140 (2019) 420-430.

