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Hope: Microstructure-Based Modeling

e Multiscale modeling research is “rampant” - very little erystal
.scale mechanical testing data, however

e Qverarching idea: use High Energy X-ray Diffraction (HEXD)
data and in situ loading with FEM representation of
microstructure to understand crystal scale material behavior
o Processing and Performance - induced CHANGES in unit cell to
understand material response

® Merge model with diffraction data:

M.P. Miller and PR. Dawson, Current Opinion in Solid State &
Materials Science, 18, 286299, 2014.
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Instructional Videos From CHESS

Google: Chess x-ray micromechanics
https://www.youtube.com/watch?v=kYEboNz423A&t=9s
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MAE 7110 Course Notes

Some Elements of Solid Mechanics

1.1 Direct Notation . . . . .
1.2 Indicial Notation . . . .

...............................

1.3 Coordinate Transformations . . . . . . . . . . . . . .

1.4 Stress and Strain . . . .

Crystallography, Orientations and Symmetry

2.1 Basic Crystallography .
2.2 Orientations . . . . . ..
2.3 Symmetry . .. ... ..

Elements of Bragg Diffraction

3.1 X-rays and Waves . . . .
3.2 DBragg'sLaw . . ... ..
3.3 X-Ray Absorption . . . .

The Laue Equations and The Rotating Crystal Experiment
4.1 Scattering from an Electron . . . . . . . . ... oL

4.2 The Scattering Vector .
4.3 Scattering from an Atom

...............................

4.4 Scattering from a Crystal (Diffraction) . . . . . ... ... ... ... ... ...

4.5 Ewald’s Sphere . . . ..

4.6 Rotating Crystal Diffraction Experiments . . . . . . . . . . ... ... ... ...
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28
29

31
31
33
34
35
38
40

Cornell High Energy Synchrotron Source

National School on Neutron and X-ray Scattering




MAF 7110 C.niirge Ninteg
® You need to understand diffraction (or scattering) well enough

to do your science - the deeper your understanding, the more
versatile the tool will be for you.
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o Diffraction data looks like bad TV - data reduction is
challenging. There are several packages out there but NONE of it
is point and click - you are going to have to write some code.

e Connecting x-ray data to underlying material behavior is
challenge and the opportunity.

® Obtaining in situ (real time) information over an entire
polyerystalline aggregate is the main advantage of doing
diffraction at a light source
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MAF 7110 C.niirge Ninteg
® You need to understand diffraction (or scattering) well enough
to do your science - the deeper your understanding, the more
versatile the tool will be for you.
o Diffraction data looks like bad TV - data reduction is
challenging. There are several packages out there but NONE of it
is point and click - you are going to have to write some code.
e Connecting x-ray data to underlying material behavior is
challenge and the opportunity.
® Obtaining in situ (real time) information over an entire
polyerystalline aggregate is the main advantage of doing
diffraction at a light source
o Be careful, it is easy to get “hooked” on diffraction and light
sources and late nights and multiple days at the beam line and
the ’rool becomes YOur ! sclence l‘l’ s acfually pretty grea’r'
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High Energy Diffraction Basics
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¢t X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment

t Synchrotron source
— High Fidelity, tunable X-ray beams
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— High Energy; E > 50 keV
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— Rotate the sample

1. Diffracting Crystal

2. Area Detector
3. Debye-Scherrer Ring
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¢t Synchrotron source

t Monochromatic x-rays
— High Energy; E > 50 keV

— Rotate the sample
» Intensity at (26, n, w)
» Fast, area detectors

— High Fidelity, tunable X-ray beams

* Lower absorption - bulk samples
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High Energy Diffraction Basics
¢ X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment

1. Diffracting Crystal

2. Area Detector
3. Debye-Scherrer Ring
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High Energy Diffraction Basics
¢ X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment

1 Synchrotron source q=ko.-ki=g
— High Fidelity, tunable X-ray beams A =2dsinb
¢ Monochromatic x-rays g e Ko
— High Energy; E > 50 keV A
* Lower absorption - bulk samples
— Rotate the sample a- 20
 Intensity at (26, n, w) >
« Fast, area detectors ki T L
A
Absorption vs.
u Energy
p
>
E
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Cornell High Energy Synchrotron Source National School on Neutron and X-ray Scattering




High Energy Diffraction Basics
¢ X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment

1t Synchrotron source q=k.-ki=g
— High Fidelity, tunable X-ray beams A=2dsind
! Monochromatic x-rays P % Ko

— High Energy; E > 50 keV
* Lower absorption - bulk samples

— Rotate the sample 26
 Intensity at (26, n, w) »g
« Fast, area detectors ki T L
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High Energy Diffraction Basics
X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment
Synchrotron source g=k.-ki=g
— High Fidelity, tunable X-ray beams A =2dsinb
Monochromatic x-rays p_ he Ko
— High Energy; E > 50 keV A

* Lower absorption - bulk samples
— Rotate the sample 26

. | Y]
Intensity at (28, n, w) —>——
« Fast, area detectors ki ="

Polychromatic (White) x-rays
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High Energy Diffraction Basics

¢t X-ray diffraction- 100+ years old!

— “Workhorse” scattering experiment

¢t Synchrotron source g=k.-ki=g

— High Fidelity, tunable X-ray beams A=2dsind

¢ Monochromatic x-rays p_ he Ko
— High Energy; E > 50 keV A

* Lower absorption - bulk samples
— Rotate the sample 26

. B
 Intensity at (26, n, w) —>——

« Fast, area detectors ki ="
t Polychromatic (White) x-rays

— 40keV < E < 200 ++ keV (Blue)
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High Energy Diffraction Basics

¢t X-ray diffraction- 100+ years old!

— “Workhorse” scattering experiment

¢t Synchrotron source g=k.-ki=g

— High Fidelity, tunable X-ray beams A=2dsind

¢ Monochromatic x-rays p_ he Ko
— High Energy; E > 50 keV A

* Lower absorption - bulk samples
— Rotate the sample 26

» Intensity at (26, n, w) »g

« Fast, area detectors ki o=
t Polychromatic (White) x-rays

— 40keV < E < 200 ++ keV (Blue)

— Energy Dispersive Diffraction (EDD)
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High Energy Diffraction Basics
X-ray diffraction- 100+ years old!

— “Workhorse” scattering experiment

Synchrotron source q=k.-ki=g
— High Fidelity, tunable X-ray beams A=2dsind

Monochromatic x-rays g e Ko
— High Energy; E > 50 keV A

* Lower absorption - bulk samples
— Rotate the sample

20

. B
 Intensity at (26, n, w) >
« Fast, area detectors ki ="
Polychromatic (White) x-rays
— 40keV < E < 200 ++ keV (Blue)

— Energy Dispersive Diffraction (EDD)
— Peak information now in terms of E
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High Energy Diffraction Basics
X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment

Synchrotron source q=k.-ki=g
— High Fidelity, tunable X-ray beams A=2dsind

Monochromatic x-rays g e Ko
— High Energy; E > 50 keV A

* Lower absorption - bulk samples
— Rotate the sample

20

» Intensity at (26, n, w) »g
« Fast, area detectors ki o7
Polychromatic (White) x-rays
— 40keV < E <200 ++ keV (Blue)
— Energy Dispersive Diffraction (EDD)
— Peak information now in terms of E
— Translate sample and/or detector
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High Energy Diffraction Basics
X-ray diffraction- 100+ years old!
— “Workhorse” scattering experiment

Synchrotron source q=k.-ki=g
— High Fidelity, tunable X-ray beams A=2dsind

Monochromatic x-rays g e Ko
— High Energy; E > 50 keV A

* Lower absorption - bulk samples
— Rotate the sample

20

» Intensity at (26, n, w) »g
« Fast, area detectors ki o=
Polychromatic (White) x-rays
— 40keV < E <200 ++ keV (Blue)
— Energy Dispersive Diffraction (EDD)
— Peak information now in terms of E
— Translate sample and/or detector
» Collect a field of data
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High Energy Diffraction Basics
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Fixed Bragg Diffraction Angle
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— jransidate Sample ana/or aeteclor
e Collect a field of data
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High Energy Diffraction Basics
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» Collect a field of data
» Slits enable stepping through T
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High Energy Diffraction Basics

Fixed Bragg Diffraction Angle

NL
t S

Energy x
Dispersive Detector
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Beam Slits

Diffracted
Beam Slits
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File:EDXRD_ Schematic.png#/media/
File:EDXRD_Schematic.png

— jransidate Sample ana/or aeteclor
e Collect a field of data

» Slits enable stepping through T

— SERIOUS fast alternative to neutron
diffraction
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Beam size / grain size: Powder or Single Crystal
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Beam size / grain size: Powder or Single Crystal

Cornell University

Cornell High Energy Synchrotron Source

& ‘o.,
R ‘
L u"“

National School on Neutron and X-ray Scattering




Beam size / grain size: Powder or Single Crystal
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Beam size / grain size: Powder or Single Crystal

 MultiGrain Experiments (Spots)
— Collect diffracted intensity in each grain
— 100s to 2000 grains
— Detector distance

* Near field - orientation map of
polycrystal

e Fare field - strains and evolution with in-
situ loading
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Beam size / grain size: Powder or Single Crystal

 MultiGrain Experiments (Spots)
— Collect diffracted intensity in each grain
— 100s to 2000 grains
— Detector distance

* Near field - orientation map of
polycrystal

e Fare field - strains and evolution with in-
situ loading
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Beam size / grain size: Powder or Single Crystal

 MultiGrain Experiments (Spots)
— Collect diffracted intensity in each grain
— 100s to 2000 grains
— Detector distance

* Near field - orientation map of
polycrystal

e Fare field - strains and evolution with in-
situ loading
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Beam size / grain size: Powder or Single Crystal
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Beam size / grain size: Powder or Single Crystal
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Beam size / grain size: Powder or Single Crystal
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Beam size / grain size: Powder or Single Crystal

« “Powder” Experiments

— 5,000-10,000 grains

— Distribution information

— In situ loading or residual stress
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Lattice Strains - Link to Stress

4.0 mm 0 BA
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Lattice Strains - Link to Stress

y
. . A
Start with the idea of stress .
analysis using resistance X
strain gages
T A
4.0 mm BCBBHA
=X

SGT-1/350-TY11

€a(04) = cos*(04)er1 + sin*(04) ez + 25in(04)cos(04)ers
es(0g) = cos*(0p)er; + sin(0p)eay + 25in(0p)cos(0p)e1n

ec(0c) = cos*(0c) e + sin’(0c)eas + 2sin(0c)cos(0c)ern
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Lattice Strains - Link to Stress

y
Start with the idea of stress }
analysis using resistance i X
strain gages B
— Plane Stress - 3 Strains .
40mm E}CBB 8,
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€a(04) = cos*(04)er1 + sin*(04) ez + 25in(04)cos(04)ers
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ec(0c) = cos*(0c) e + sin’(0c)eas + 2sin(0c)cos(0c)ern
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Lattice Strains - Link to Stress

y
e Start with the idea of stress }
analysis using resistance i X
strain gages B
— Plane Stress - 3 Strains =
— Rosette Equations for the strain 5 165\ 4
tensor © .
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Lattice Strains - Link to Stress

o Start with the idea of stress
analysis using resistance
strain gages

— Plane Stress - 3 Strains

— Rosette Equations for the strain
tensor

 Crystal lattice strains and e
rotates under applied load ea(04) = cos*(0)enr + sin®(04)ens + 25in(0.4)cos(0a)e1s

es(0g) = cos*(0p)er; + sin(0p)eay + 25in(0p)cos(0p)e1n

ec(0c) = cos*(0c) e + sin’(0c)eas + 2sin(0c)cos(0c)ern
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Lattice Strains - Link to Stress

o Start with the idea of stress
analysis using resistance
strain gages

— Plane Stress - 3 Strains

— Rosette Equations for the strain
tensor

 Crystal lattice strains and e
rotates under applied load ea(04) = cos*(0)enr + sin®(04)ens + 25in(0.4)cos(0a)e1s

— Change in 29 produces a peak EB(QB) = 0082(83)611 + Sin2((93)€22 + QSin(QB)COS(QB)elg
shift = normal strain ec(0c) = cos*(0c)err + sin®(0c)eas + 2sin(0c)cos(0c)ers

4.0 mm H
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Lattice Strains - Link to Stress

o Start with the idea of stress
analysis using resistance
strain gages

— Plane Stress - 3 Strains

— Rosette Equations for the strain
tensor

 Crystal lattice strains and e
. a {110}
rotates under applied load ea(64) = co . 1(0.4)cos(04)e1s

— Changein 20 produces a peak ep(0p) = ccCe0, {311}
shift = normal strain cc(0c) =cc N

4.0 mm H
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p {200}

CeO, {222}
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Lattice Strains -

Start with the idea of stress
analysis using resistance
strain gages

— Plane Stress - 3 Strains

— Rosette Equations for the strain

tensor

Crystal lattice strains and
rotates under applied load

— Change in 20 produces a peak
shift = normal strain

— Scattering vector is strain
“direction”

Cornell University

Link to
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Lattice Strains - Link to Stress

e Start with the idea of stress
analysis using resistance
strain gages

— Plane Stress - 3 Strains
— Rosette Equations for the strain
tensor

 Crystal lattice strains and e
rotates under applied load e4(0) = cc T ia)eosO)en

— Changein 20 produces a peak ep(0p) = ccCe0, {311}
shift = normal strain cc(0c) =cc N

— Scattering vector is strain
“direction”

 Collect enough strains to
build lattice (elastic) strain 1
tensor using rosette equations 20
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Lattice Strains - Link to Stress

e Start with the idea of stress
analysis using resistance
strain gages

— Plane Stress - 3 Strains
— Rosette Equations for the strain
tensor

 Crystal lattice strains and e
rotates under applied load e4(0) = cc T ia)eosO)en

— Changein 20 produces a peak ep(0p) = ccCe0, {311}
shift = normal strain cc(0c) =cc N

— Scattering vector is strain
“direction”
 Collect enough strains to
build lattice (elastic) strain 1
tensor using rosette equations 26

— Mechanics: equilibrium and 6
strains
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High Energy X-ray Diffraction at CHESS & APS sector 1
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High Energy X-ray Diffraction
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Tensile Response of One Crystal - Far Field

Stress (MPa)
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Tensile Response of One Crystal - Far Field
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Cyclic Deformation of High Purity Copper
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Macroscopic Stress (MPa)
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 Fatigue Crack initiation in copper
Heterogeneous plastic slip

« Cyeclic tests:
OFHC (99.9% pure copper)

e CHESSF2&APS 1-ID
e Su lLeen Wong & Robert Carson simulations (P. Dawson)

Macroscale Stress-Strain




Forward projection: interface with the model




Forward projection: interface with the model

Reverse Modeling / Inversion
Use data with the diffraction
model to back-calculate:

T FERE v e lattice strains - stresses
KRR M| e orientation distributions
ool e la. e Extract stresses and orientations
A A from FEM model

RS RN L B o (ompare

ERRRE o lteration/hypothesis check?

rystal Stress Tensor
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Forward projection: interface with the model

Forward Projection/ w
Virtual Diffractometer
e Put diffraction model into FEM
o Accurately represent x-ray
paths and defector )
o Distortion and orientation of ©
virtual crystals within virtual §i4
diffraction data
» (Cowmpare virtval and real
detectors directly
 Hypothesis investigation Y
o Seeimpact directly w *




Diffracted Intensity Distribution - Far Field Detector

before macroscopicyield

Polyerystal Sample - rotate in w

e 100-1000 grains

o 20-100 peaks per grain

Each peak contains a projection of
strain and orientation distributions
within a grain

o Post-yield ‘smearing” associated with
plasticity - erystallographic slip

To first approximation
e Orientation spread: n (azimuthal) fw

o Strain spread: 20 (radial) - fraditional line
broadening

Mowents of intensity distribution
e Mean value (centroid)
o Full Width Half Max (spread)




Diffracted Intensity Distribution - Far Field Detector

before macroscopicyield

Polyerystal Sample - rotate in w -

e 100-1000 grains S

e 20 - 100 peaks per grain 3 FWHM(26)
Each peak contains a projection of

strain and orientation distributions = ‘

within a grain

o Post-yield ‘smearing” associated with
plasticity - erystallographie slip FWHM(n)

To first approximation
e Orientation spread: n (azimuthal) fw

o Strain spread: 20 (radial) - fraditional line
broadening

Mowents of intensity distribution
e Mean value (centroid)
o Full Width Half Max (spread)




Finite Element Model - Virtual

Y, Pixel grid on
virtual detector

Finite element in
virtual sample

PN
i W S

«  Build a virtual polycrystal
- Single crystal elasticity + plasticity

- ~100 scattering centers within each
tetrahedral element

- Apply diffraction model - diffracted
intensity projected onto detector (1)
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Wong et. al, 2013, Comp. Mat. Sci., 77, 456-466.




Finite Element Model - Virtual

143

138

Finite element in
virtual sample

«  Build a virtual p
« Single cryst:

- ~100 scattering 133
tetrahedral elen

- Apply diffractior  LakadallG)’
intensity project




Orientation and Strain Spread

Fit 20 Profile

e From each peak (spot)

madial extract simple center of

> FWHM mass (COM) and spread
(FWHM) information
 Radial - lattice strain
Azimuthal - orientation
-« e Using all spots for 1

crystal (20-100), compute

' | Azimuthal O and
| FWHM
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¢ Distribution over the aggregate
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& Distribution (strains)
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INSity@CHESS

 Push the envelope of High Energy X-ray
Diffraction (HEXD) methods

— Create new methods, steal others

 Provide “enhanced support” of HEXD
experiments

— Meet designers, scientists, non-x-ray
experts “half way”

— Model and analysis support

— Form partnerships: industry, national
labs, university faculty

e Spectrum of Methods and Applications
— Residual Stress

e Thick sections 4) )

+ Stress + chemisty CAT - First Beamtime Fall 2014

 AM parts
— In situ Fatigue Crack Growth
— Other In situ conditions

\\"_9“\“'\ - ""'“—f v, .
Cornell University WE —

Cornell High Energy Synchrotron Source , :
National School on Neutron and X-ray Scattering

@




InSity People
« Armand Beaudoin: InSitp Associate Director, UIUC emeritus Prof.,
distinguished industrial career, experiment/model interface

 Darren Pagan: Staff scientist, novel HEXD methods / data analysis /
upgrade

e Chris Budrow: CHESS GRA working on residual stress

« Ramya Nair: Post-Doc: working on fracture in cement
 Kelly Nygren: Post-Doc: blending EM and HEXD

 Eric Miller: Tufts ECE Prof., signal processing, data science

d ‘; L > -
!!g = “ o . -

: f V' bz .
Budrow Pagan Beaudoin Nair Nygren

Cornell University

S
{es]
— !&@E‘)j Cornell High Energy Synchrotron Source

National School on Neutron and X-ray Scattering
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Welding Residual Stress Measurement Results

Justin Mach, Senior Engineer, Caterpillar
Armand Beaudoin, Industrial Llaison, InSity@CHESS

Matt Miller, Director, InSity@CHESS

Darren Dale, CHESS F2 Beamline Scientist / Associate Director, INSitu@CHESS

Peter Ko, CHESS Research Associate

Graduate Research Assistants (Cornell University): Darren Pagan, Mark Obstalecki, & Chris Budrow
Graduate Research Assistant (University of lllinois at Urbana-Champaign): Kamalika Chatterjee
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Lap Joint Sample

Cornell University

5 Cornell High Energy Synchrotron Source
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(Avg: 75%)
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CAT Simulation result
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Residual stress resulting from welding process simulation.
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 Welding model validation

— Simple sample “representative” of a real weld
— 1/4” steel plate

« Monochromatic reflection geometry
— Traditional sin2g analysis
— Replicate lab source experiment . -
— Vary energy R
— CHESS F2 x/Y — rotation

AT

 Polychromatic Energy Dispersive Diffraction (EDD) m
— Penetrate through the plate
— Interrogate surface layer
— Plane stress - rosette analysis
— Advanced Photon Source (APS)

Mach, et. al.,JOM, 69:5, 393-399, 2017.

Cornell University
5 Cornell High Energy Synchrotron Source
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Siimmarv of CAT Resilllts
. ADD

L Reflection
(sample A)

EDD
(sample A)

EDD
(sample B)

Model

[MPa]
300
' 200
100
0
-100
-200
-300

VN Mach, et. al.,JOM, 69:5, 393-399, 2017.
[ A Cornell University
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Additive Manufacturing: Residual Stress and Distortion

Distortion Example (Blown Powder)
Residual Stress Induced Cracking

Optomec LENS MR-7

Powder Bed: EOS

Material: Ti-6Al-4V,3.5in.x 0.75in.x 1.25 in. (L

X W x H)
Substrate: Ti-6Al-4V, 4 in. x 1 in. x 0.5 in. (Lx W x H)

BUIIC

. "".‘.

,0:?1‘[,3 in.x0.75in. x125|n _ _
Courtesy Fred Lia and Wesley Mitchell

Buila
(Lx W x H)
Substrate: Ti-6Al-4V, 4 in. x 1 in. x 0.5 in. (Lx W x H) CIMP 3D. Penn State Univ
7 .
) Cornell University & Jim Williams — Ohio State Univ. )
36 Mich. State 4/4/19
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Residual Stresses in AM Materials

e Monochromatic powder

e Measure gradient
— Map strain over thin flange
— Scans on grid of 0.5 x 0.5 mm
* 3600 Measurements!

 Thin section of sample
— Plane Stress

e Sample rotated 180 degrees
about y-axis

— Stress result is average of 5
"front" and "back" data. mm
e White beam measurements i 5
mm _._

e Not shown here
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e Monochromatic powder

e Measure gradient
— Map strain over thin flange
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3600 Measurements!

 Thin section of sample
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Additive Manufacturing: Results

[1 1 0] reflection used to compute strain, with diffraction ring broken up into 10 degree

arcs (for peak fitting).

Isotropic Elasticity applied to calculate stress: E =114 GPa, v =0.342

Boundary conditions were used to adjust lattice parameter, adjusting so that normal

stresses at corners are zero.
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Intensity [log10(ph./pixel)]

o

Coherent Diff 100 milliseconds
MM-PAD Detector: Sol Gruner, Cornell
e 150 micron pixels
e 38mm X 57/mm

o (Left) 107 x-rays / second; dynamic range 1 - 106
photons

 (Right) Seeing Alz:Ni Debye rings with 5 photon range
« CdTe for high energy

2 Cornell University

Brazing - 2 milliseconds

o

19 ==
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mM-PAD O
Detector
Tate et. al, Journal of
Physics: Conference
Series, 425(6):
062004, 2013.
Giewekemeyer et. al,

J. Synch. Rad 21(5):
1167-1174, Sep 2014. )
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CHESS-U Stations

MSN-C Beamlines

3B:
MSN-C

Functional

Materials
Beamline

#Esl%) Cornell University

<4/ Cornell High Energy Synchrotron Source

National School on Neutron and X-ray Scattering
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Conclusions / Advice

Enormous opportunities for “watching” the processing and
performance of crystalline materials using high energy x-ray
diffraction

— “Real” real time when coupled with high speed area detectors

« If you have a process that you are interested in that happens at timescales
down to sub-nanosecond***, you can probably watch it with x-rays.

 Nondestructive

High energy x-rays are the ONLY way to make many of the
measurements I've talked about today.

Are you going to be auser or a USER ?

— Incredible opportunities open up when you understand the true utility of
HE x-rays, but this is not a point and click world

— Write your own virtual diffractometer - figure out diffraction, decide what
YOU want to do with it - don’t settle for what a beamline scientist will send
home with you.
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Conclusions / Advice

Enormous opportunities for “watching” the processing and
performance of crystalline materials using high energy x-ray
diffraction

— “Real” real time when coupled with high speed area detectors

« If you have a process that you are interested in that happens at timescales
down to sub-nanosecond***, you can probably watch it with x-rays.

 Nondestructive

High energy x-rays are the ONLY way to make many of the
measurements I've talked about today.

Are you going to be auser or a USER ?

— Incredible opportunities open up when you understand the true utility of
HE x-rays, but this is not a point and click world

— Write your own virtual diffractometer - figure out diffraction, decide what
YOU want to do with it - don’t settle for what a beamline scientist will send
home with you.

— Some of you will use existing methods as a starting point. MAYBE making
a new measurement is a function of how much SKIN your are willing to
leave behind..... - Hammer people, Nail People and combo

— Measure anything but not measure everything

2 Cornell University
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