SINGLE CRYSTAL **DIFFUSE SCATTERING**

RAYMOND OSBORN Neutron & X-ray Scattering Group Materials Science Division

Acknowledgements: Stephan Rosenkranz and Matthew Krogstad

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Work supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

Neutron & X-ray School August 6, 2024

OUTLINE

- What is diffuse scattering?
 - What causes it?
- What is it good for?
- A random walk through disordered materials
- How do I model it?
- A few equations
- How do I measure it?
- Case Study 1: Diffuse scattering from vacancies in mullite
- Case Study 2: 3D-ΔPDF in sodium-intercalated V₂O₅
- How do I look at static disorder?
 - Diffuse scattering with elastic discrimination

WHAT IS DIFFUSE SCATTERING?

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SIMPLE EXAMPLE OF DISORDER **Replace 30% of atoms (blue dots) by vacancies (green dots)**

Random Vacancies

U.S. DEPARTMENT OF **ENERGY** Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Vacancy Clusters

Model due to Thomas Proffen

BRAGG SCATTERING The average occupancy is unchanged Bragg peaks are identical

Random Vacancies

Vacancy Clusters

DIFFUSE SCATTERING The diffuse scattering is quite different.

Random Vacancies

Laue Monotonic Scattering

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Vacancy Clusters

Argonne 🗲 NATIONAL LABORATO

WHAT IS IT GOOD FOR?

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DIFFUSE SCATTERING FROM METALLIC ALLOYS

Short-range Order in Null Matrix ⁶²Ni_{0.52}Pt_{0.52}

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

J. A. Rodriguez, et al., Phys. Rev. B 74, 104115

DIFFUSE SCATTERING FROM A FAST-ION CONDUCTOR Sublattice Melting in Fluorite Compounds

CaF₂

M. T. Hutchings et al J. Phys. C 17, 3903 (1984)

DIFFUSE SCATTERING FROM MOLECULAR SOLIDS Molecular Flexibility in Benzil X-RAY

1941

2001

BENZIL

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003) 11

DIFFUSE SCATTERING FROM JAHN-TELLER POLARONS

B. J. Campbell, et al., Phys Rev B 65, 014427 (2002).

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

INCOMMENSURATE MODULATIONS IN Sr_{0.5}Ba_{0.5}NbO₆

15

10 ·

5

 \mathbf{x}

-10

-15

Acknowledgements: Bixia Wang and Daniel Phelan

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Sr_{0.5}Ba_{0.5}Nb₂O₆ L=0.5 300K

MAGNETIC MONOPOLES IN SPIN ICE Diffuse Magnetic Scattering in Dy₂Ti₂O₇

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

D. J. P. Morris, et al., Science **326**, 411 (2009).

HOW DO I MODEL IT?

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DIFFUSE SCATTERING THEORY **A Few Equations** $I = \sum \sum b_i b_j \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij})$

- Laue Monotonic Diffuse Scattering $I = \bar{b}^2 \sum_{i,i} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}) + N(\bar{b}^2 - \bar{b}^2); \ \bar{b}^2 = (c_A b_A + c_B b_B)^2; \ \bar{b}^2 = c_A c_B (b_B - b_A)^2$
- Cowley Short-Range Order

 $I_{diffuse} = Nc_A c_B (b_B - b_A)^2 + \sum_{ij} \alpha_{ij} c_B c_A (b_B - b_A)^2 \exp[(b_B - b_A)^2] \exp[(b_B - b_A)^$

Warren Size Effect /

 $I_{diffuse} = Nc_A c_B (b_B - b_A)^2 \left(1 + \sum_{ij} \alpha_{ij} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}) \right)$

Borie and Sparks Correlations

$$I = \sum_{i} \sum_{j} b_{i} b_{j} \exp\left(i\mathbf{Q} \cdot (\mathbf{R}_{i} - \mathbf{R}_{j})\right) \left[1 + i\mathbf{Q} \cdot (\mathbf{u}_{i} - \mathbf{u}_{j}) - \frac{1}{2} \left(\mathbf{Q} \cdot (\mathbf{u}_{i} - \mathbf{u}_{j})\right)^{2} + \dots\right]$$

T. R. Welberry *Diffuse X-ray Scattering and Models of Disorder* (2022)

$$p(i\mathbf{Q} \cdot \mathbf{r}_{ij}); \ \alpha_{ij} = \left(1 - \frac{P_{ij}}{c_j}\right)$$
$$+ \beta_{ij} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}) \ ; \ \beta_{ij} = f(\epsilon_{AA}^{ij}, \epsilon_{BB}^{ij})$$

V. M. Nield and D. A. Keen *Diffuse Neutron Scattering From Crystalline Materials* (2001)

J. M. Cowley, J. Appl. Phys. 21, 24 (1950)

SOME RULES OF THUMB Acknowledgment: Hans Beat Bürgi

Reciprocal space

- Sharp Bragg reflections
 - no defects
- Sharp diffuse rods
 - no defects
- Sharp diffuse planes
 - no defects
- Diffuse clouds
- no defects

- 3D-periodic structure
- no defects
- 2D-periodic structure
- perpendicular to the streaks
- disordered in streak directions
- ID-periodic structure
- perpendicular to the planes
- disordered within the plane
- OD-periodic structure
 - no fully ordered direction

THERMAL DIFFUSE SCATTERING M. Holt, et al, Phys Rev Lett 83, 3317 (1999).

- Lattice vibrations produce deviations from the average structure even in perfect crystals
- X-ray scattering intensity is given by the integral over all the phonon branches at each Q

$$I_0 \propto f^2 e^{-2M} \sum_{j=1}^6 \frac{|\mathbf{q} \cdot \hat{\mathbf{e}}_j|^2}{\omega_j} \operatorname{coth}\left(\frac{\hbar \omega_j}{2k_k}\right)$$

HOW DO I MEASURE IT?

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MEASURING X-RAY DIFFUSE SCATTERING Continuous Rotation Method

Cryocooler

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Sample

Incident Beam

X-RAY SCATTERING GEOMETRY Continuous Rotation Method

- The sample is continuously rotated at 1°s⁻¹
- Frames are collected at 10Hz
 - 3600 x 8MB frames
 - 30GB every 6 minutes
 - 3TB per day

Incident Beam

Sample

Pilatus 2M Cd le Detector

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Reciprocal Space Argonne

Η

Q-RANGE IN ROTATION METHOD ON SECTOR 6

- With the following parameters, we cover -15Å⁻¹<Q<15Å⁻¹
- E_i ~ 87 keV
- λ ~ 0.14 Å
- Detector distance ~650 mm
- Pilatus 2M CdTe: 1679x1475 pixels
- Pixel size ~170 µm
- This Q-range includes thousands of Brillouin zones.
- e.g., for a ~ 10 Å, ~60,000 Bragg peaks

EXPERIMENT WORKFLOW

mn_det_omega_mov_mask/f1 Peak Table mov_mask/f1 Peak Table										
		Prima	ry		0 Secor	ndary	1			Orie
i	x	У	z	ola 🔺	Azi	Intensity	н	к	L	Diff
195	1214	1638	1574	2.01	-10.00	2.44e+07	-0.00	0.00	-1.00	0.000
291	1280	1637	2447	2.01	13.15	1.8e+07	1.00	-0.00	0.00	0.000
403	1269	1639	3371	2.01	9.14	2.12e+07	-0.00	0.00	1.00	0.001
76	1203	1636	652	2.01	-13.70	3.89e+06	-1.00	-0.00	-0.00	0.001
336	1083	1522	2824	2.01	-73.81	2.35e+08	0.00	1.00	0.00	0.001
116	1401	1523	960	2.01	73.36	1.99e+08	-0.00	-1.00	0.00	0.000
342	1402	1428	2894	2.01	106.43	2.37e+08	-0.00	-1.00	0.00	0.000
126	1083	1426	1030	2.02	-107.25	2.36e+08	0.00	1.00	0.00	0.000
78	1282	1313	672	2.02	166.43	1.95e+07	1.00	0.00	-0.00	0.001
406	1215	1311	3391	2.02	-170.57	2.74e+07	-0.00	0.00	-1.00	0.001
196	1271	1311	1595	2.02	170.31	1.49e+07	-0.00	0.00	1.00	0.001
296	1204	1313	2468	2.03	-166.77	1.99e+07	-1.00	0.00	-0.00	0.001
84	1362	1676	718	2.83	30.83	3.35e+07	-0.99	-1.00	0.00	0.003
302	1120	1675	2530	2.83	-31.44	3.53e+07	0.99	1.00	-0.00	0.002
306	1364	1275	2563	2.84	148.77	4.44e+07	-0.99	-1.00	0.00	0.002
90	1122	1274	751	2.84	-149.17	2.49e+07	0.99	1.00	-0.00	0.003
181	1373	1670	1443	2.84	33.83	8.12e+07	0.00	-1.00	-1.00	0.000
215	1055	1616	1732	2.84	-53.13	1.23e+08	0.00	1.00	-1.00	0.001
274	1440	1602	2288	2.85	57.29	1.25e+08	1.00	-1.00	0.00	0.001
421	1429	1618	3506	2.85	52.51	1.32e+08	0.00	-1.00	1.00	0.001
391	1109	1669	3256	2.85	-34.45	6.54e+07	-0.00	1.00	1.00	0.000
58	1043	1601	518	2.85	-57.74	1.13e+08	-1.00	1.00	0.00	0.001
64	1441	1349	571	2.85	122.40	1.08e+08	1.00	-1.00	0.00	0.000
394	1375	1281	3290	2.85	145.75	8.31e+07	-0.00	-1.00	-1.00	0.000
220	1430	1333	1779	2.86	127.17	1.31e+08	-0.00	-1.00	1.00	0.001
427	1056	1331	3553	2.86	-127.69	9.27e+07	-0.00	1.00	-1.00	0.001
186	1112	1279	1477	2.86	-146.36	8.88e+07	0.00	1.00	1.00	0.000
23	1254	1240	232	2.86	177.08	2.57e+07	1.00	0.00	-1.00	0.000
280	1045	1346	2341	2.86	-123.16	1.37e+08	-1.00	1.00	0.00	0.001
Score: 0.0007 Threshold 0.05 Save Orientation Close Window										

DIFFUSE SCATTERING IN 3D THE RELAXOR PbMg1/3Nb2/3O3 M. J. Krogstad, et al, Nature Materials 48, 1 (2018).

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DIFFUSE GALLERY

CASE STUDY 1: MULLITE

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MULLITE - A CASE STUDY

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)

- Mullite is a ceramic that is formed by adding O²⁺ vacancies to Sillimanite
- Sillimanite has alternating AlO₄ and SiO₄ tetrahedra
- Mullite has excess Al³⁺ occupying Si²⁺ sites for charge balance
- This results in strong vacancy-vacancy correlations

Sillimanite: Al₂SiO₅

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

3D DIFFUSE SCATTERING IN MULLITE

- There is strong diffuse scattering throughout reciprocal space The shape of the diffuse scattering is strongly dependent on the value of L

L=0.16

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

L=0.5

L=0.75

MONTE CARLO ANALYSIS

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)

- In a classic analysis, Richard Welberry and colleagues developed a set of interaction energies to model mullite disorder
- Interaction energies were initialized:
- insights from chemical intuition
- insights from the measured diffuse scattering
- The diffuse scattering was calculated using a Monte Carlo algorithm to generate vacancy distributions first in 2D slices and then in 3D

Interatomic vector	α_{lmn}	Interatomic vector	α_{lmn}
$\frac{1}{2}$ <1 1 0>	-0.24	<0 2 0>	+0.13
[1 1 0]	-0.23	$\frac{1}{2}$ <3 1 0>	+0.22
[1 - 1 0]	-0.05	$\frac{1}{2}$ (1 3 0)	-0.01
$\langle 1 0 0 \rangle$	-0.06	$\langle 1 0 1 \rangle$	+0.07
$\langle 0 1 0 \rangle$	+0.22	$\langle 0 1 1 \rangle$	-0.12
$\langle 0 0 1 \rangle$	-0.03	$\frac{1}{2}$ (3 3 0)	+0.17
$\frac{1}{2}[1 - 1 2]$	+0.12	$\langle 1 1 1 \rangle$	-0.01
$\frac{1}{2}$ [112]	+0.12	$\frac{1}{2}\langle 3 2 \rangle$	-0.11
$\langle \overline{2} 0 0 \rangle$	-0.12	$\frac{1}{2}\langle 3 3 2 \rangle$	-0.07

MONTE CARLO ANALYSIS RESULTS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne

 10^{1}

VACANCY ORDERING IN MULLITE

 $\mathbf{q} = \pm$

$$\pm \frac{1}{2}\mathbf{c}^* \pm \frac{1}{3}\mathbf{a}^*$$

CASE STUDY 2: SODIUM-INTERCALATED V₂O₅ **3D-APDF**

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

PAIR DISTRIBUTION FUNCTION ANALYSIS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Emil Bozin (ADD 2013)

THREE-DIMENSIONAL PAIR DISTRIBUTION FUNCTIONS

Z. Kristallogr. 2012, 227, 238-247 / DOI 10.1524/zkri.2012.1504

C by Oldenbourg Wissenschaftsverlag, München

The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts

Thomas Weber* and Arkadiy Simonov

238

Laboratory of Crystallography, ETH Zurich Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland

- The 3D PDF technique was pioneered by Thomas Weber and colleagues at ETH
 - Philippe Schaub, Walter Steurer, Arkadiy Simonov
 - See Yell A. Simonov, et al, J Appl Cryst 47, 1146 (2014).
- The ability to measure three-dimensional S(Q) over a large volume of reciprocal space provides the 3D analog of PDF measurements.
- Total PDFs if Bragg peaks and diffuse scattering can be measured simultaneously
- $-\Delta PDFs$ if the Bragg peaks are eliminated
- This allows a model-independent view of the measurements in real space.

"PUNCH AND FILL"

 $I = \sum \sum b_i b_j \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij})$

Symmetrize

A. Simonov, T. Weber, and W. Steurer, Journal of Applied Crystallography 47, 1146 (2014).

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$P_{tot}(\mathbf{r}) = FT\left[I(\mathbf{Q})\right] = FT\left[|\bar{F}(\mathbf{Q})|^2\right] + FT\left[|\Delta F(\mathbf{Q})|^2\right] = P_{hkl}(\mathbf{r}) + \Delta P(\mathbf{r})$

Punch

SODIUM-INTERCALATED V₂O₅

M. J. Krogstad, S. Rosenkranz, J. M. Wozniak, G. Jennings, J. P. C. Ruff, J. T. Vaughey, and R. Osborn Nature Materials 19, 63 (2020).

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SUBLATTICE MELTING IN Na_{0.45}V₂O₅ **Order-Disorder Transition in the Half-Filled Sodium Sublattice** K=0.5

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

3D-APDF ANALYSIS OF Na_{0.45}V₂O₅

SNk JUN

()() ZUUN

ZUUN

REAL SPACE vs 3D-APDF

IUCr MONOGRAPHS ON CRESTALLOGRAPHY * 16

Diffuse X-Ray Scattering and Models of Disorder

T. R. Welberry

INTERNATIONAL UNION OF CRYSTALLOGRAPHY **OXFORD SCIENCE PUBLICATIONS** Carlot Information Stationers and

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

REAL EXAMPLE - SODIUM-INTERCALATED V2O5.

379

24.3.3 Ordering of Na within the two-leg ladders.

Fig. 24.10(a) shows a small region near the origin of the x = 0 plane of the ΔPDF map obtained from the 50K X-ray data. The strong white origin peak indicates perfect positive correlation for an atom with itself. Other white peaks also indicate a positive correlation between an atom at the origin with another at a position given by the vectors A, B or C (and the reverse vectors -A, -B and -C). Conversely the dark peaks indicate strong negative correlations. It is quite straightforward to deduce from the observed pattern of white and dark peaks that the local arrangement of the Na ions must follow a pattern like that shown in Fig. 24.10(b), where the occupancy of the two Na sites on each rung of the two-leg ladders tends to alternate between $(Na\Box^{T})$ and $(\Box Na)$ producing a zig-zag chain of occupied sites. Neighbouring ladders at $z = \pm 1.0$ have the same occupancy pattern which is in phase with the ladder at z = 0.

Fig. 24.10 A comparison of (a) the $\triangle PDF$ peak intensities at 50K in the x = 0 plane of Na_{0.45}V₂O₅ with (b) the derived real-space model of sodium ions. Data used in this figure are reproduced with kind permission of Dr Ray Osborn.

24.3.4 $\triangle PDF$ peak intensities in the z = 0 plane.

Fig. 24.12 shows the z = 0 plane of the Δ PDF map observed at three different temperatures. Fig. 24.11(b) shows an enlargement of part of Fig. 24.11(a) where white arrows (labelled A – F) have been used to identify different interatomic vectors. The same set of vectors is shown in Fig. 24.11(e) which is a plot of the z = 0 plane of the average structure. The maps are dominated by the same alternating correlations of Na occupancy along the ladder direction parallel to y. Similarly neighbouring chains at $x = \pm 1$ are instep with that at x = 0 for temperatures 50K and 150K but at 250K these correlations have been lost.

Although the maps are dominated by the correlations in the Na ladders there are numerous weaker peaks that correspond to correlations between the ladder Na₁ ions and the interstitial Na₂ ions. These correspond to vectors A, B, C and E in Fig. 24.11(e) and involve one Na1 and one Na2 ion. These peaks are clearly evident in the 50K map, somewhat less evident at 150K and even less evident at 250K. They are weak relative to those involving Na1 ions alone simply because of the low occupancy of the Na2 sites.

[†]here \Box is used to represent a vacant site

ORDER-DISORDER TRANSITION VIEWED IN REAL SPACE Na_{0.45}V₂O₅ 30

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

EFFECT OF Q-RESOLUTION

- Finite Q-resolution \Rightarrow Gaussian envelope in real space.
- The width can be determined from the total PDF
- *i.e.*, the transform of the long-range crystal structure.

U.S. DEPARTMENT OF ENERGY
Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

FITTING CORRELATION LENGTHS IN REAL SPACE

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 $f(\mathbf{r}) = A \times G(\mathbf{r}) \times \exp(-|\mathbf{r}|/\xi)$

BACK TO MULLITE

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

THE NATURE OF STRUCTURAL SOLUTIONS

B. D. Butler, T. R. Welberry, & R. L. Withers Phys Chem Minerals **20**, 323 (1993)

"It is now possible to interpret the short-range order in the crystal structure without a detailed simulation of the disorder, which has in the past often required the optimization of a sometimes large number of model parameters fitted over a substantial volume of reciprocal space. In fact, the $\triangle PDF$ magnitudes directly determined from the reciprocal space data are simply related to the Warren-Cowley SRO parameters that have frequently been used to parametrize diffuse scattering models." Richard Welberry

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Interatomic vector	α_{lmn}	Interatomic vector	α_{lmn}
$\frac{1}{2}$ <1 1 0>	-0.24	<0 2 0>	+0.13
[1 1 0]	-0.23	$\frac{1}{2}$ <3 1 0>	+0.22
[1 - 1 0]	-0.05	$\frac{1}{2}$ <1 3 0>	-0.01
$\langle 1 0 0 \rangle$	-0.06	$\langle 1 0 1 \rangle$	+0.07
$\langle 0 1 \rangle$	+0.22	$\langle 0 1 1 \rangle$	-0.12
$\langle 0 0 1 \rangle$	-0.03	$\frac{1}{2}$ (3 3 0)	+0.17
$\frac{1}{2}[1-12]$	+0.12	$\langle 1 1 1 \rangle$	-0.01
$\frac{1}{2}$ [1 1 2]	+0.12	$\frac{1}{2}\langle 3 1 2 \rangle$	-0.11
$\langle \overline{2} 0 0 \rangle$	-0.12	$\frac{1}{2}\langle 3 3 2 \rangle$	-0.07

 $I_{diffuse} = Nc_A c_B (b_B - b_A)^2 + \sum_{ij} \alpha_{ij} c_B c_A (b_B - b_A)^2 \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}); \ \alpha_{ij} = \left(1 - \frac{P_{ij}}{c_j}\right)$

HOW DO I LOOK AT STATIC DISORDER?

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

COMPARISON OF ELASTIC SCATTERING AND THE STATIC APPROXIMATION

$$G(\mathbf{r}, t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{coh}^{static} = b_{coh}^{2}$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{coh}^{elastic} = b_{coh}^{2}$$

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

N $\sum \, \delta(\mathbf{r} - \mathbf{r}_i(t) + \mathbf{r}_j(0)) \rangle$ =1 $G(\mathbf{r},t)e^{-i\mathbf{Q}\cdot\mathbf{r}}d\mathbf{r} \qquad \hbar\delta(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{i\omega t}d(\hbar\omega)$

 $G_{coh}^2 N \int G(\vec{r},0) e^{iQ.\vec{r}} d\vec{r}$

 $b_{coh}^2 N \int G(\vec{r},\infty) e^{i\vec{Q}.\vec{r}} d\vec{r}$

CROSS CORRELATION CHOPPER

S. Rosenkranz and R. Osborn, PRAMANA- Journal of Physics, 71, 705 (2008).

TOF Laue Diffractometer

- highly efficient data collection
- wide dynamic range in Q

Statistical Chopper

- elastic energy discrimination
- optimum use of white beam

 $\hbar \omega = O$ Elastic scattering:

Inelastic scattering: $\hbar\omega = +E_0$

 $\hbar\omega = - E_0$

SOURCE SPALLATION NEUTRON SOURCE

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

World's most intense pulsed, accelerator-based neutron source

Arcangelo Porelli (1653-1713)

Arcangelo Corelli was the greatest violinist of his age and an influential composer who became known as the "Father of the Concerto Grosso". This musical form contrasts music from a small ensemble of solo musicians with the full orchestra. Similarly, the properties of many materials are enriched by the interactions between both short and long-range ordering motifs that the Corelli instrument is designed to explore.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CORELLI

Instrument Scientists Feng Ye Arianna Minelli

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CROSS CORRELATION IN ACTION

Cross Correlation

ELASTIC DISCRIMINATION WITH CROSS CORRELATION Benzil C₁₄H₁₀O₂

T=300 K, no Cross-Corellation 0 -5 10 0 [H,H,0] (rlu)

T. R. Welberry and R. Whitfield, Quantum Beam Science 2, 2 (2018)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

T=300 K, Cross-Corellation

COMPLEMENTARITY OF NEUTRONS AND X-RAYS Pb(Mg_{1/3}**Nb**_{2/3}**)O**₃**-30%PbTiO**₃ – M. J. Krogstad, *et al.*, Nat Mater **48**, 1 (2018).

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Corelli Neutrons

LETTERS PUBLISHED ONLINE: 11 MARCH 2012 | DOI: 10.1038/NMAT3273

nature

Copper ion liquid-like thermoelectrics

Huili Liu^{1,2}, Xun Shi^{1,3}*, Fangfang Xu³, Linlin Zhang³, Wenqing Zhang³, Lidong Chen¹*, Qiang Li⁴, Ctirad Uher⁵, Tristan Day⁶ and G. Jeffrey Snyder⁶

3D-APDF ON CORELLI

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Alex Rettie

Oh

Symmetrized Corelli Data

THE FUTURE

- crystal total scattering over large volumes of reciprocal space.
- High-Energy X-rays
- Time-of-Flight Neutrons
- This is enabling new ways of analyzing the data:
 - 1. Unsupervised machine learning
 - 2. *ab initio* computational modeling
 - 3. $3D-\Delta PDF$ real-space pair distributions
- The results give unique insight into disordered materials
 - Bridging the gap between diffraction and imaging

• Advances in instrumentation have transformed our ability to measure single

A FEW REFERENCES

- T. R. Welberry & B. Butler, Chem Rev 95, 2369–2403 (1995).
- F. Frey, Acta Cryst B **51**, 592–603 (1995).
- T. R. Welberry & D. J. Goossens, Acta Cryst A 64, 23–32 (2007).
- D. A. Keen & A. L. Goodwin, Nature News **521**, 303–309 (2015).

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

OXFORD SERIES ON NEUTRON SCATTERING IN CONDENSED MATTER • 14

Diffuse Neutron Scattering from **Crystalline Materials**

> VICTORIA M. NIELD and DAVID A. KEEN

OXFORD SCIENCE PUBLICATIONS

FEEDBACK Single Crystal Diffuse Scattering - Raymond Osborn

- Lecture, Tuesday, August 6 11:10am to 12:10pm
- https://forms.office.com/g/NRAfaeWR71

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

