Tales of X-ray scattering:
Application and data analysis

Millicent (Millie) A. Firestone

X-ray scattering reveals structural information on materials by observing the scattered
intensity of an incident x-ray beam striking a sample as a function of incident angle,
energy.

The basics of scattering
Instrumentation

Scattering vs. direct imaging

Tale 1. Self-assembled liquid crystals
Tale 2. Nanocarbons

Tale 3. Time-resolved SAXS

Tale 4. Au NP polymer composites
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The basics of small-angle x-ray scattering (SAXS)
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X-ray scattering instrumentation

/ Laboratory SAXS/WAXS
Transmission SAXS @ CINT/LANL

APS sector 12IDC

APS sector 12IDB \
Xiabing Zuo

Simultaneous SAXS/WAXS
GISAXS/GIWAXS

g= 0.01=0.2A1
(~ 628 A—31A) ]
g= 0.003=28A1

KeV = 8.04 . .
(~2,094 A—2.2A)
s A KeV =14
\A / g= 0.003=28A" \ /
, (~2,094A-2.2A)
A KeV =4.5-36
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X-ray scattering vs. Electron microscopy

Non-destructive (maybe)

= No special sample preparation required

= Flexible sample environments (full
hydration)

= Amenable to in-situ / operando studies

= Provides atomic, molecular, nano- &
mesoscale structure

= ns — fs time-resolved studies with
synchrotron or free-electron laser x-ray
sources

=  Multi-modal
is fairly
scattering)

= Gives an average (global) structure with

statistics

= Data is given in reciprocal space

Data interpretation can be challengin

materials characterization
routine  (spectroscopy +
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I(q), arbitrary units

= Destructive \

= Sample preparation required

= Samples are typically under vacuum

= Some in-situ cells now available (E-chem)

= Provides atomic to mesostructure images
(same dimensional range as SAS)

= Direct imaging (real space)

= |mage analysis is straightforward

iCan “find” what you are looking for /
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Nanostructure characterization of self-assembled amphiphiles by
SAXS and WAXS (o) [H,0] O
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Analysis of small-angle x-ray diffraction: The case of the weakly interacting
[HO]  poX

anion 5\ H
R1/N\/NX\@/\/\/\/\/\R2 $ HaC- é CH,
> | E s 0 35 % © |
(7))
I
X
1 ————
[59 % (W/w) d nA = 2dsin©
:XH20=0.96 '

g=0.16 (001); 0.31 (002) A1; d=2n/qg =39.1 A

35 % (wiw)

I(g), arbtrary units

xHzo = 0.88
0.1 g =0.18 (001); 0.36 (OOZ) ;d=2mn/qg=35.0 A
_ g=024A1:d=2n/qg=26.2A
15 % (wiw)
xHz0 = 0.46 .
e Lamellar structure independent of H,O content
e Lattice dimension increases with increasing water
001 Lo : : - e Poor spatial coherence as indicated by FWHM of Bragg peak
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I{q) / arbitrary units

Analysis of low g scattering to detail amphiphile aggregate morphology: A

model independent approach
Pair distance distribution function (PDDF) 1 Haveky, P Jrmian 3 Appl. Gryst 2008, 4202 347 — o

electron densities.

Uncorrected averaged data

Background subtracted
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| Capillary scattering

I{g) / arbitrary units
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Scattering vector, g/ A*
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Distribution of distances between all pairs of points within the particle weighted by the respective

P(r) is obtained by histogramming the distances between any pair of scattering elements within a particle

y sin(gr
P(ry=r [ 1<q)%)4nq2dq
0

“visible”, real-space morphology of sheet
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Combining MD simulations with wide-angle x-ray scattering to study

molecular (solvent shell) structure: The case of a linear soft anion,
SCN

Molecular Dynamics simulations reveal Theoretical radial

ionic domain (geometric configuration) distribution function EXp t (WAXS)
(RDF)
15t solvent shell structure d=7.00 A d=4.22A o d:408A
(™) ’ 7 7 08 I 59% (ww)HO
28 33% (wiw) HO

06 o

N 5% (w/w) HZO

g (1/r)
I(g), arbitrary units
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2nd solvent shell structure

L L
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Scattering vector,q Al Scattering vector,q A1
* Thiocyanate anion is positioned axially above / below the imidazolium ring
* Out-of-plane (axial) SCN prevents H-bonding to imidazolium = lack of gelation
& ‘-{ * Theory predicts significant secondary solvent shell structure - little preference

for SCN to exist as nearest neighbors to imidazolium

e WAXS confirms first and second solvent shell structure
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Analysis of small-angle x-ray diffraction: The case of the strongly interacting
anion - [H,0] o,

® H
RN VNXWRz Q H3C"‘@N/\/\/\/\/\CH3
('_) T —
[ I
X |
:§ -1 10
g
% 01T 44 %wiw)HO
C i
_________________________ 001 | | e
0.220 V1 1. 0.17) ¥
0380 \/3 14 % (wlw) HZO 0196 V2
d=2mn/qg=286A 0001 i : : 0.214 V4
o 0.05 0.1 0.6
d= (2/\/3)d =33 A Scattering vector,q, A" 0.278 v4 vé
Conversion from a well-ordered 2D hexagonal nanostructure to a mixture of 0.332 V8
3-D cubic phases 0.356 V8

Puzzle — why higher symmetry with increasing water content?

How does ionic domain structure lead to these nanostructures?

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED

EST.1943
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

T VA [y S
Nebgen, BT. et al. Faraday Discussions, 2018, 206, 159-181. Ml A A=Y



Wide-angle x-ray (WAXS) scattering provides insight into solvent shell
(molecular) structure: Spherical compact anion, Cl

Exp’tl (WAXS)
ion pair for in-plane CI" =4.27 A
_ion pair for out-of-plane CI" = 3.26A

Molecular dynamics simulations reveal Theoretical RDF

ionic domain (geometric configuration) d=422 A
L e s e B R §

15t solvent shell structure

o 0.8 | - 44 (Ww %) H O 5
i 1 14 (wiw %) H O
r 1 0.8 |
i ], 2 (wiw %) H.0
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* MD simulations do not accurately determine the axial positioned Cl anion

2" solvent shell structure 14 wt. % water — WAXS reveals 2 distinct anion cation distances in first solvent

shell. Equatorial (4.27 A) and axial chloride (3.26 A). Also observed second
W solvent shell structure

& .

44 wt. % water - correlation peak shifts to higher g, implying increased density

/ (%) 4, from water infiltration into first solvent shell - extended network formation
/
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Non-destructive analysis of detonation-derived carbons by x-ray
scattering

e The science problem: How does the recovered solid carbon products from a detonation connect to the
event?

» Science of signatures — nuclear forensics

* Fundamental shock induced chemical reactions

* Synthesis of novel nanocarbons using extreme conditions

Sub-ps =» ns 1ns =» 100 ns 100 ns =» 1 us

()
HC=C- 8.Q
@

N, + H,0 + Recovered
0 F I & oot
Decomposition Fragment/Radical Nanoparticle Combustion Mesoscale aggregation
Formation formation “After burn” cluster formation
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Evaluation of hierarchical structure using multi-decade x-ray

scattering: Single component - carbon

Molecular Nano Meso

Macro

A | 1nm | 100 nml /\lum |

*  Crystallinity
Combined USAXS + SAXS + WAXS

Bonse-Hart — pin-hole instruments at 9ID-C (Jan
llvasky)

—
'

* “Stitched” scattering patterns provides structural

£
information spanning length scales from 170 pum to é

0.95 A

* How to analyze multi-decade scattering (USAXS +
SAXS)?

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED

* Primary particle morphology
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X-ray scattering patterns collected on unpurified soot recovered from
detonating composition B

Composition B T, =3600K: C.diamond
60% 40% P =29 GPa /
O5N NO 5
i Vg Ve O,N ) NO; H *h'
kN) Steady Z b damond o
rl]o 4/‘ 8‘
2 NO, i H -diamond 3
TNT RDX // Graphlte
T — —r —— T — s -Tnp atu K.‘ "
Jooooo000 | %, USAXS SAXS WAXS
E % Observe differences in scattering patterns between
1000000 k ‘0% . . . .
: &5 detonation soot produced by detonating in air vs.
e ] inert atmospheres
S 10000 £ o
= ; .
= 3 How can we analyze the scattering patterns to
100 ¢ 0 understand the differences?
3
1k %%o
o%e [°) A:Lo_ B
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Evaluation of hierarchical structure in complex samples: Model
independent approach

Beaucage’s unified fit function

Model independent approach for identification of scattering entities within a complex sample

I(q) =G exp (-g°Ry*/3) + B(g")"

Guinier law + Porod power law

* Radius of gyration, R,, for each structural level ¢ The Porod exponent specifies the fractal

identified nature of the scatter
* The Rq gives a measure of the average size of the Surface fractal if -3<P<-4
scatter (primary particle or aggregate) Sharp interface P = -4

Mass fractal (Dimensionality law)

1D rods, P=-1
2D Platelets (lamellae), P = -2
3D spheres, P=-4

» Los Alamos
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Evaluation of composition B (unpurified) detonation soot using a mode

independent unified fit approach

steady detonatlon amblent atmosphere
-3.16 £ 0. 0080
Rg = 7438 A = 9.27 :

10° ;
10° E

10° |

I{g) 7 cm™

100 |

"F p=-3.98 + 0.0064

F R,=104A £59 _
0.001 0.01 0.1 1

Scattering vector, g, A’
2-level fit (2 distinct populations) =2 low degree of
aggregation
P~ -4 =» Smooth interfaces & spherical 1° particles
P =-3.2 =» Fractal aggregates/agglomerates
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I(q) =G exp (-g°Rs%/3) + B(qg™)P

I(q) / cm

steady detonation, inert atmosphere

108

10°

10*

100

001 -I 1111

Q)
L, N

=-3.354+0.015
=2997.5 A%+20.7

0.001

0.01 0.1 1

Scattering vector, g, A

1-level fit (1 distinct populations) =» highly
aggregated

P =-3.3 Fractal
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Determination of nanoparticle morphology using a model dependent
approach. Nanoparticles recovered by detonation in inert atm

Common Form Factors of Shaped Objects )
(many more were computed numerically) SAXS Scattering

Morphologies P(q) or P?(q) - depends on source Morphologies
Lg I(s), relative Solid sphere
Spheres 9 . 2n2
(radius R) —(qRF[Sm(qR) qR-cos(qR)F =Ag(AR) o Hollow‘ sphf(e
i ONg roc

Spherical shells [Re¥ AgnlGR1)- R Agn(@R)I2
C—

(outer radius: Ry =
inner radius: R;) (Ry* = Ry%

Triaxial ellipsoids

11
2 2, 12 2, 2 2y2
rominces: 2be) j;j;Apn qf a2 cos?(ax/2) + b2sin?(zx/2)(1-y2), + c2y2 | dx dy

Cylinders J1?[qR/1 x| sin¥(qlLx/2)

grad:xs.:LR o [GRA-CP  (alx2y -4

ength: L) Jy(x) is the first kind Bessel function of order 1
Thin disk ing L= 2- h(2aRyaR
(radius: R) By settingL =0 q2R2

in2(qL/2) s .

Long rad _ slnm at- sin®(q ¥
(length: L) By setingR =0 ql— -f (aLi2y? ¢ .

NXY EX

“Structure Analysis by Small Angle X-Ray and Neutron Scattering” L. A. Feigen and D. |. Svergun

Selection of form factor can be made based upon unified fit
results

Primary (nano)particles are well-modeled as circular discoidal
particles

» Los Alamos
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SAXS data collected on unpurified soot
recovered from detonating composition B

in

I{g), Arbitrary Units

an inert (Ar) atmosphere

10 e

©
=
T

001 |

0001 Lasusl
0.01

Scattering vector, g, A"

350.8 +0.45 A

42.6 =0.07 A I-

»
»
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Determination of nanoparticle morphology using a model dependent
approach. Nanoparticles recovered by detonation in air

10 - ] Primary particles modeled as core-shell

¢ ©

I(q), Arbitrary Units

_ﬂ
i=
-]
>
£ o1t P(q)=A(q) /V?
3 E q q
< 0.001 T . . PR
—~ 0.06 0.08 0.1 03 4 05 0.7
—S Scattering vector, g, A E A(q)circle—shell = Apcore [Apshelll/out¢(q’ Rout)_(Apshell _Apcore)l/inqj(q’ Rin)]

0.01 | 3

F - 4R
3
Ap,,. = Excess scattering length density of the core
0.001 b

: Ap,., = Excess scattering length density of the shell
Scattering vector, g, A”
sinx—xcosx]

3
o=

3

Hollow core - lamellar shell primary particle .

Lshell=13.4 =041 nm e SAXS data is modeled by a spherical core-shell particle
form factor (core is air and shell is carbon)

* Unified fit accurately predicts spherical morphology but

ﬁ) doesn’t account for shell structure

> Los Alamos
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Direct / real-space imaging (TEM) confirms USAXS & SAXS

Comp B - Air Comp B - Argon

* Mesoscale structure - Loose aggregate .
Diffusion limited cluster aggregation
Attractive particle interactions (oxidized
surfaces?)

Mesoscale structure - Tight/compact aggregate
Reaction limited cluster aggregation
Barrier to particle interaction

e Difficult to discern individual NPs

* Easily discern individual core shell hollow NPs “outlying particles are deformed discs

+ Los Alamos
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Time-resolved SAXS monitors the growth / assembly of carbon
products behind the detonation front

SAXS instrument constructed for monitoring nascent carbon
particle formation behind the detonation front

PZT Pin CCD Cam.
2

@ / m
% : é
- e/ : 8 = ;
HC=C- ggg @ %‘ o’a‘\e‘ed " g Beam Splitters
O 2 x-ray beam Blocked b g ? Gated
Lop, 0 CCCC0O > ocked beamp, Jf |2 (5 & & = | cCD Cam.
iz 1 g g|a3 4
ol g
'CH+3 Qﬂ QOQ g 2
*
S iy v v
@ e s i Electrical
L Detonator Gated Gated
\ J\ | CCD Cam. CCD Cam.
\_Y_} _Y_/ \_Y_) 1 3

Fragment/Radical Nanoparticle Combustion  Mesoscale aggregation
Formation formation “After burn” cluster formation

=  Dynamic Compression Sector (35) — NNSA funded sector at
APS/ANL
) "/-\etonator current PZT pin
ol
= First-of-a-kind experiments (only other attempt was in Russia) £
e}
<
= Required high flux (penetration through dense fluid & rapid e ray intonsity Camera gates |c1|c2/c3/c
dilution of particles due to fluid expansion) - pink beam &
(14.5kev or 23 keV) ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 n n n n N n
=  Required timing x-ray bunches to detonation wave passage and 0.0 0.5 1.0 15 2.0 2.5
s%i)ng camera gates to the x-ray bunches Time (us)
o
Los Alamos UNCLASSIFIED
Managed bE;TT:'fJaAd3 National Security, LLC for the U.S. Department of Energy’s NNSA V VA 7 ali
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Time-resolved SAXS monitors the growth / assembly of carbon
products behind the detonation front

Exploswe Sample
Conffgu ratlon

» Los Alamos
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Time-resolved SAXS on detonating composition B (in vacuo) reveals

growth & assembly of carbon frameworks

I(q), arbitrary units

Fractal clusters of disintegrated lamellae -
10000 F T T T T —
- TS~o_  260ns
E ]
100 -
3 . [ Post-detonation
Pre-detonation %
1 0.;)2 | 0.;)4 | 0.;)6 ‘0.‘08‘ 0.1
Scattering vector, g, A™
Firestone, Dattelbaum, Podlesak,
Gustavsen et al. AIP  Conference
proceedings, 1793, 030010 (2017)
Los Alamos

)

NATIONAL LABORATORY UNCLASSIFIED

Nano-sized flattened globules of carbon
condensates (rough, multilayer
ellipsoidal particles)

Morphology is similar to shungite /
Graphene QDs / C-dots

260 ns

Radius = 132.9 +2.6 A (13 nm)
Diameter = 26.6 nm
Thickness = 27.6 &= 0.8 A (3 nm)

1

Radius =88.2 =3.0A (* 9 nm)
Diameter=17.6 nm
Thickness=14.4 = 2.6 A(~ 1.5 nm)
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Evaluation of multi-component systems by x-ray scattering: Plasmonic

/ Emissive QD polymer composites

In-situ NP synthesis
Water-soluble NPs

\@/ cr + [AUC|4]_ (aq)
16% w/w

i

NATIONAL LABORATORY
EST.1943

Ex-situ synthesized NPs
Organo-soluble NPs
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SAXS characterization of nanostructured plasmonic (Au NP)- poly(IL)
composite

on T HAuCI, (aq) hv
3 16% wiw

/\Né\N

cr

o
P -1 ;
2 2 0.19A e
O . ol 7Y
S5 10° | §
) > \
(1]
= o
5
8 g
o 5
5 —_
g - T .
- = 10 *\4
L L L L L L L L L
0.06 0.08 0.1 0.3 0.5 N ‘ ‘ R
0.06 0.08 0.1 0.3 0.5

* Polymerization leads to a reduction in polymer symmetry (2HEX to Hexagonal Perforated

Lamellar (HPL))
*  Where are Au NPs? In the water channels? What is the size /shape of the in-situ synthesized

ﬁ?, AlaHSs
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I(q) / arbitrary units

Element specific contrast in X-ray scattering : Anomalous X- ray

1.2 10 e

Scattering (ASAXS) | = _
Fn="1o(q) + F'(E) +if’(E)
SAXS is a contrast technique / ASAXS is an element specific contrast ., _ | %k&%wj%%w
technique > : @f ]
e Atomic scattering factor changes (anomalously) near the absorption edge of £ “*[ § ;
the element. s t : ]
* Signal from the element in question can be distinguished from the rest of the : : ;
sample o i ]
e Variation is achieved by measuring the scattering pattern at many different i 3°°°°°°°°°°.‘j Au Ly edge is 11.93 KeV
photon energies of the primary beam neme ”;ngy/;; we
L1l I I T I ! [ 0.1 —1l I I T I L L1
1191Kev e _
11 94 Key | Observel(g) vary with energy or
0.1 - only in low g region —
8 0001 — 11.913 KeV
I(g) ¥ with KeV ¥ §.
©  0.0001 —
0.01 - Au NPs reside in H,O domain %
\E 10° —
@ 10° —
0.001 — '% ~
TTT I I T TTTT] I I I . 107

! ) o .1 0.01 _ 0.1 p
Scattering vector, g, A Scattering vector, q, A
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SAXS characterization of nanostructured plasmonic (Au NP)- poly(IL)
composite

10

10° -

I(q), arbitrary units

n n N n n n n n
0.06 0.08 0.1 0.3 0.5

AFM confirms internal structure of Au NPs within water channels of a HPL structure
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Guinier analysis of low g anomalous small-angle scattering yields
polymer embedded Au NP morphology

GU|n|er Approxn’na‘“on 01 ”I%I““‘“&I bl ' L 3 ||||I||||I||||I||||I||||I||||
=-2.8465 - 788.56x R=0.99736
I(g) = 1(0) exp (-1/3 R2 q2) oo~ o
35 —| L
11.913 KeV
— 9o 0.001 — .
m=-Ry2/3 Ry~ V3/5R % N
> .
£ 0.0001 — a4 |
* Onlyvalidifg<1/R, g
T 10°—
* Matrix or solvent has been 45 — -
10° —
removed
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Final thoughts - go forth and scatter

v X-ray scattering is a powerful technique that can yield an enormous amount of structural information
on complex materials

v" The technique is well-suited for application to a wide range of soft /organic matter
v High quality data can be rapidly acquired at a synchrotron source.

v' There are plenty of opportunities for further refining / improving our approaches to data analysis
(i.e., automation for solving SAXS patterns analogous to single crystal structure determination)

v Software packages are available for data reduction and data analysis (J. llavsky — Irena)
v Strongly recommend collecting co-supporting structural data (EM, AFM, etc)
v Questions ?

v firestone@lanl.gov
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