FullProf tutorial on crystal structure and commensurate magnetic structure

Qiang Zhang

Neutron Scattering Division, ORNL

POWGEN workshop "Getting the Most from Your POWGEN Data", June 15-17, 2023

ORNL is managed by UT-Battelle for the US Department of Energy

• Orthorhombic structure: *Pnma (No. 62)*

a= 9.143086, b= 3.784552, c=13.416915;

- Octahedra CrSe_{6;}
- Magnetic transition 75 K:

Files provided for this tutorial

Time-of-flight diffraction data at POWGEN: PG3_42702-2_300K.dat PG3_42704-2_10K.dat

Instrumental resolution file: PG2018B_HighRes_60Hz_b2_Ddep.irf

- cif file for crystal structure CrSbSe₃.cif
- Final PCR files PG3_42702-2_300K.pcr PG3_42704-2_10K.pcr (representation analysis)
- Supporting information
- FullProf_CM.PDF (step-by-step instructions)

POWGEN Peak Profile

TOF profile has Convolution of back-to-back exponentials with pseudo-Voigt (a linear combination of Gaussian and Lorentzian)

6 refinable parameters: position, intensity, α , β , σ and γ Position:

TOF(microseconds) = Zero + Dtt1 * D + Dtt2 * D^2 + Dtt_1overD)/D

Exponentials: Alpha largely affects the sharpness of the leading TOF edge of each peak; larger values mean sharper front edges. Beta terms affect the trailing TOF edge in the same way.

$$\alpha = \alpha_0 + \frac{\alpha_1}{d} + \frac{\alpha_q}{\sqrt{d}}$$
 and $\beta = \beta_0 + \frac{\beta_1}{d^4} + \frac{\beta_q}{d^2}$

Gaussian and Lorentzian width: Sig terms affect the Gaussian shape component of the peak profiles; larger values result in broader peaks. The coefficients describe the sig and Gamma values as follows:

$$\sigma^{2} = \sigma_{0}^{2} + \sigma_{1}^{2} d^{2} + \sigma_{2}^{2} d^{4} + \begin{pmatrix} \sigma_{q}^{2} \\ d^{2} \end{pmatrix} \longrightarrow \sigma_{q}^{2} d \text{ GSASII used}$$

$$\gamma = \gamma 1 * d + \gamma 2 * d^{2} + \gamma 0$$

HIGH FLU>

- All these coefficients marked as green were implemented in the 2021 versions of FullProf by Juan rodriguez-Carvajal recently.
- > In other TOF instruments and previous versions of FullProf, there lack Dtt_loverD, β_q and σ_q .

Formats of the instrumental resolution files

Traditional Instrumental resolution files for old version FullProf

(2011 B- 2021 A cycle)

Instru	umental resolut	ion fun	ction f	or POWGEN/	SNS 2018_B cycle ireso: 5
! To b	be used with fu	nction 1	NPROF=9	in FullPr	rof (Res=5)
!					Bank 3 CWL = 1.500
! Тур	pe of profile f	unction	: back-	to-back <u>ex</u>	pon * pseudo- <u>Voigt</u>
NPROF	9				
!	<u>Tof</u> -min(us)	step	æ	of-max(us)	TOF region and step
TOFRG	11300.0000	5.00	00 31	5000.0000	rer region and stop
1	Dtt1	Dtt:	2	Zero	
D2TOF	22589.89258	-3.	55042	-15.12841	
1	TOF-TWOTH of t	he bank			
TWOTH	90.0				
1	Sig-2 Si	g-1	Sig-0	Ga	ussian function
SIGMA	57.460 1	0.000	0	.000	
1	Gam-2 Ga	m−1	Gam-0	l au	and the second second second
GAMMA	26.000 -29	.576	9.000	LOF	entzian function
1	alph0	beta	0	alph1	beta1 RR Exponentials
ALFBE	0.000000	0.10	0880	0.128660	0.003960
END					

New Instrumental resolution files for new version FullProf (2021 B cycle-future)

1	In	strume	ntal Resol	lution Parameters	for TOF (numeric	al look-up table)	for POWGEN/SNS 2	2018 B cycl	e
3	1	be us	ed with it		(Kes-	- Bank 1			
4	! T	ype of	profile :	function: back-to-	back expon * pse	udo-Voigt			
5	NPRO	F 9	-		-				
6	1	IQ	f-min(us)	step 🕽	of-max(us)		TOF region	h and st	en
7	TOFR	G 11	308.69531	5 282062.50	0000		i Oi i logioi		op
8	1		Dtt1	Dtt2	Dtt_loverD	Zero	TOF to	n D	
9	D2TO	F	22589.892	58 -3.55042	0.24175	-15.12841			
10	!	TOF-	TWOTH of	the bank	nı	imprical cop	fficients		
10	TWOT	н	90.000	a:	Germa		Patra	ob.: 64	£ # 1
12	:		spacing	Bigma"2	Gamma	Alpha	Beta	Shiit	for pattern # 1
14	PI 91	_216_6	AM_ALF_BE:	1 21809	2 85332	0 39237	0 10474	0.00000	
15		0	44515	1.21788	2.84730	0.39204	0.10578	0.00000	
16				1.21/00	2101/00	0100201	0.10070	0.00000	
17		0	.89199	7.70333	3.42920	0.14657	0.10563	0.00000	
18									
19		1	.51101	757.12213	18.55641	0.11664	0.15918	0.00000	
20		1	.54497	844.20258	19.59661	0.11365	0.15412	0.00000	
21		•							
22		2	.56205	7234.60986	59.75310	0.06182	0.08379	0.00000	
23			••						
24		5	.12410	116786.14844	252.91258	0.02469	0.05172	0.00000	
25		7	.24657	462492.40625	465.01639	0.01463	0.04323	0.00000	
26	END								
21									

Listed the global coefficients without Dtt_loverD, β_q and σ_q for old version FullProf.

Provides d-dependent numerical coefficients for new 2021 versions of FullProf (used in this tutorial)

Allows a more accurate determination of instrumental resolution.

Comparison of the refinement quality using old and 2021 versions of FullProf and IRFs

Old versions of FullProf and old IRFs until 2020

2021 versions of FullProf and new IRFs

- New 2021 versions of FullProf and IRFs improved the refinement quality
- Old PCRs can be read automatically by the new 2021 versions of FullProf and converted to the new format PCR files

Recommend using the new version FullProf to refine POWGEN data for getting an improved refinement on the peakshape

Exercise steps

- I. Import the cif file and create a PCR file for a single datafile at 300 K (T>Tm);
- II. Refine the data to get accurate structural parameters including the lattice constants, atomic positions, temperature factors and peak profile parameters at 300 K;
- III. Save the PCR file at 300 K as a new PCR to refine the structural parameters at 10 K (T<Tm).
- IV. Identify magnetic peaks/contributions and determine the propagation vector.
- V. Symmetry analysis to obtain irreducible representations and Basic vectors using SARAh.
- VI. Select a magnetic model and add it as the 2nd phase in the PCR.
- VII. Refine the magnetic phase to obtain the magnetic structure and ordered moment.
- VIII. Display the magnetic structure using FpStudio and Vesta.

I. Import the cif file and create a PCR file for a single datafile at 300 K (T>Tm)

Default values IRF File Parameters/ SpaceGroup Atoms Information 9 146000 3.785100 9 146000 3.785100 9 146000 90.000 90.000 90.000 90.000 90.000 Space Group: P n m a Number of total Operators: 0	b c alpha beta gamma 3785100 13.424000 90.000 90.000 90.000 y Pnma Imagenetic Phase Imagenetic Phase tal Operators: Imagenetic Phase Imagenetic Phase
IRF File	b c alpha beta gamma 3 785100 13.424000 90.000 90.000 90.000 P n m a Image: Magnetic Phase Image: MagneticPhase Image: MagneticPhase
Il Parameters/ SpaceGroup Atoms Information a b c alpha beta gamma 9.146000 3.785100 13.424000 90.000 90.000 50.000 Space Group: P n m a Imagenetic Phase Magnetic Phase Number of total Operators: 0 1	/ SpaceGroup / Atoms Information
a b c alpha beta gamma 5.146000 3.785100 13.424000 90.000 90.000 90.000 Space Group: P n m a Image: Constraint of the second secon	/ SpaceGroup Atoms Information b c alpha beta gamma 3.785100 13.424000 90.000 90.000 pr m a Magnetic Phase tal Operators: 5 Symmetry Phase ↑
a b c alpha beta gamma 9.146000 3.785100 13.424000 90.000 90.000 90.000 Space Group: [P n m a]	b c alpha beta gamma 3.765100 13.424000 90.000 90.000 90.000 3.765100 13.424000 90.000 90.000 90.000 3. P.n.m.a Imagenetic Phase Filler Symmetry Phase Phase Phase
a b c alpha beta gamma 9.146000 3.785100 13.424000 90.000 90.000 90.000 Space Group: P n m a □	b c alpha beta gamma 3.785100 13.424000 90.000 90.000 90.000 y: P n m a Image: Comparison of the second seco
9 146000 3.785100 13.424000 90.000 90.000 90.000 Space Group: P n m a □ Magnetic Phase Number of total Operators: 0 □ □	3.785100 13.424000 90.000 90.000 90.000 y: P n m a If Magnetic Phase tall Operators: 0 - - Symmetry Phase •
Space Group: P n m a	y: P n m a tal Operators: Symmetry Phase ^
Space Group: P n m a Magnetic Phase Number of total Operators:	b: P n m a Magnetic Phase tal Operators: 5 Symmetry Phase
Number of total Operators:	tal Operators: Symmetry Phase
Number of total Operators:	Symmetry Phase A
	Symmetry Phase
Num Symmetry Phase ^	
Num Symmetry Phase A	

Fullprof Files (PCR)						×
$\leftarrow \rightarrow \land \uparrow$	« Dr	opbo	x (ORNL) > Workshops > RAMS_2021	5 V	,⊃ Sear	ch RAMS_2021	
Organize 👻 Ne	w fold	er					0
🗸 🖈 Quick access		^	Name	Date modified		Туре	Size
Desktop	*		BackUpPCRs	11/4/2021 12:0	7 PM	File folder	
Deweleads	1		PG3_42702-2_300K	11/4/2021 12:0	7 PM	FullProf Files	
Documents	*						
Pictures	1						
CrSbSe3		v .	c I I I I I I I I I I I I I I I I I I I				>
File <u>n</u> ame:	PG3_	4270	2-2_300K			10 _	~
Save as type:	Fullpr	of In	put File				\sim
∧ Hide Folders					<u>S</u> ave	Cancel	

Important: check occ= site multip/general multip

CAK RIDGE National Laboratory

P n m a				<space group="" symbol<="" th=""></space>							
	!Atom	тур	х	Y Č	Ĩ Z İ	Biso	0cc				
	sb	sb	0.02950	0.25000	0.65786	1.00000	0.50000				
	1		0.00	0.00	0.00	0.00	0.00				
	Cr	Cr	0.15490	0.25000	0.04460	1.00000	0.50000				
	1		0.00	0.00	0.00	0.00	0.00				
	Se3	se	0.17180	0.25000	0.48450	1.00000	0.50000				
	1		0.00	0.00	0.00	0.00	0.00				
	Se2	se	0.28480	0.25000	0.21280	1.00000	0.50000				
	1		0.00	0.00	0.00	0.00	0.00				
	Se1	se	0.50190	0.25000	0.60870	1.00000	0.50000				
			0.00	0.00	0.00	0.00	0.00				
				-							

SPALLATION NEUTRON SOURCE

II. Refine the data to get accurate structural parameters at 300 K

General tab The Editor of PCR Files File Editor Tools Templates Help Exit The Editor of PCR Files 🛐 🚍 🗖 🦉 🧟 🧟 🥔 🐜 🖾 💥 🎆 📲 🐂 🕑 🗙 File Editor Tools Templates Help Exit x 😑 🖵 🗞 🔊 🖉 🥔 💹 🞇 💥 🎬 🐐 😯 🗙 Information Title, type of job: Rietveld, Integrated Intensities, General Simulated Annealing. FullProf Information Type of Patterns, profile, background, diffraction Patterns Title, type of job: Rietveld, Integrated Intensities, geometry, user-given scattering factors . Ger .al PCR Simulated Annealing. FullProf Phase name, type of calculations (JBT), ATZ, Phases Editor contribution to patterns, symmetry, Type of Patterns, profile, background, diffraction Patterns geometry, user-given scattering factors Number of cycles, relaxation factors, access to Refinement Di patterns and phases (atoms and profile) Patterns Information Constraints definitions, adding, deleting, Constraints modifying .. Information Fixing range of parameters, distances, angles Box/Restraints magnetic moments and linear restraints Weight: 1.0000 17 21 25 29 33 37 41 45 49 Pattern: 1/1 Data file/Peak shape Output options for patterns and phases: 20 (°) Output Reflection lists, Fourier, distances, BVS. Background Type The Profile Data Information: Pattern 1 × Te General Information 21 17 \times Data File / Format Refinement / Simulation Pattern Calculation/Peak Shape 3 Title Copyright (c) 2002-2 CrSbSe3 at 300K 2 Data File: PG3_42702-2_300K.dat Browse PG3_42702-2_300K Calculations Format Refinement/Calculation of a Powder Diffraction Profile O D1A/D2B (Old Format) Free Format (2thetal, step, 2ThetaF) O Variable Time X-ray Data OK X,Y,SIGMA (XYDATA) Refinement on Single Crystal Data / Integrated Intensity Data C D1A/D2B/3T2/G42 Two Axis Instrument, G41 O GSAS Format O D1B (Old Format) C X'Celerator (PANalytical) Simulated Annealing Optimization (Integrated Intensities) S.A. Options Cancel O D1B/D20 O Socabim Software C ISIS multi-bank normalized O D4/D20L Synchroton (Brookhaven) Optimize calculations according to the particular options used in this Job C DMC/HRPD (P.S.I.) O Synchroton (DBWS Software)

Pattern-Datafile/Peak shape tab

Cancel

OK

Pattern-Background Type

Pattern-Excluded Regions

Pa	tterns Info	rmation					
Г	Information						
	Pattern: 1/	1	Weight:	1.0000			Data file/Peak shape
							Background Type
				X			Excluded Regions
	Initial	Previous	Add	Del	Next	Last	Geometry/IRF
							User Scatt. Factors
				OK		Cancel	
ack	ground Inf	ormation					
B	ackground	Mode					
	⊂ 6-Coeff	icients polyno	mial function				
	C 12-Coef	ficients polyn	omial functior	ı			Origin of the polynomial: 40.000
	C Debye-li	ke (12-coeff.)+ polynomial	functions (6	6-coefficients)	
	C 12-Coef	ficients Fourie	er-cosine serie	es			
	C Fourier I	Filtering				Number of po	oints taken for Fourier Filter: 0.0000
	C Backgro		sformed by 4	coefficients	expression		
		6					Browse
	Linear Ir	nterpolation b	etween a set	backgroun	d points with	refinable heig	nts
	O Interpola	ation by cubic	splines				
	C Chebycl	nev Polynomi	al (24 coeffic	ients)		3	
					ОК	Cancel	

Pattern-Geometry/IRF tab

Pattem: 1/1	Weight: 1.0000			Data fila /Daala ahaaa	
1	,				
		1		Background Type	
	• X			Excluded Regions	1
Initial Previous	Add Del	Next	Last	Geometry/IRF	
				User Scatt. Factors	
			Const		
attern Diffraction Geomet	ry Information: P	attern 1	Cancel		
action Geometry					
agg-Brentano or Debye-Sch	errer Geometry				•
RF Corrections					
- Instrumental Resolution Fi	unction				
C None			_		
$\bigcirc \begin{array}{c} H_{G}^{*} = (U_{i} \tan \theta \cdot H_{G}) \\ H_{i} = V_{i} \tan \theta \cdot H_{i} \\ \end{array}$	$+V_i$) tan $\theta +W_i$	⊂ ^{FV}	$VHM = \sqrt{U}$	$V_i \tan^2 \theta + V_i \tan \theta + W_i$	
$M_L = A_i \tan \theta +$	$r_i/\cos\theta + L_i$		$\eta = \eta_i +$	$-X_i \cdot 2\theta + Y_i \cdot (2\theta)^{*}$	
$\begin{bmatrix} H_{G}^{*} = (U_{i} \tan \theta) \\ H_{i} = (Y_{i} 2\theta + Y_{i}) \end{bmatrix}$	$+V_i$) tan $\theta + W_i$				
$m_L = (n_i 20 + 1)$	$j_i = 0 + z_i$				
$ \begin{array}{c} C H^{*}_{\theta} = (U_{i} 2\theta + V_{i}) \\ H_{L} = (X_{i} 2\theta + Y_{i}) \end{array} $	$(Y_i) 2\theta + W_i$ $(Y_i) 2\theta + Z_i$	○ T.0.	F. p-Voigt * B-to	o-b exponentials (or * lkeda-Carpenter)	
	$(2\theta), H_I(2\theta)$	C As a	bove, by TOF	versus d-Spacing (J. Hodges)	
○ List of 2θ , H_{g} (
○ List of 2 θ , H_{g} () Name of IRF file:					

Phase-tab

Use Winplotr to get the BG of the data

File	Editor of PCR Files Editor Tools Jemplates Help Exit	General Patterns Phases Refinement Constraints
Symmetry Information Space Group Properties Symmetry Operators: Generated automatically from the symb Spacegroup: Pnms Symmetry operators Magnetic/Displacement Operators Im Laue Class: Imm	Contribution to Patterns Contribution to Patterns Symm.Op. Automatic Symmetry Servicosymmetric Case ncel	4/11/2021 12:56:48
Num Symmetry TF	Num Symmetry TR	
1 x.y.z	2 x+1/2,y+1/2,z+1/2	
3 x,y+1/2,-z	4 x+1/2.y,z+1/2	
TR=Time reversal associated to symmetry operator Time Reversal for Inversion operator OK	Cancel	
(2	

Verify the correct symmetry information

FullProf Suite ToolBar _ \sim <u>F</u>ile Programs Settings FP Dimensions Tools Edit Results Help ED PCR Basteps == 15-I Faults M Me Masi Q -8 C:\Users\qzg\Dropbox (ORNL)\Workshops\RAMS_2021\BackUpPCRs\ Code File: CrSbSe_RT_NewFP_useMini Type: pcr Date: 04/11/2021 Working Directory: Cr2O3_Sta... MixedCr2O <u>.44.</u> CDIFX UMR6226 Rennes / ILL Grenoble _ \sim File ptions Points Selection X space Calculations Rietveld plot options Text External applications Tools Help 😂 🖬 🕘 🖪 🖓 🚱 陆 Per 🛤 🐭 💓 P Per 👯 🔝 🖬 🔽 👯 🛤 🕅 DOS 🔝 RESET 🗙 # File generated by Mantid, Instrument POWGEN 🙏 Select a data file: Х ↑ → Zhang, Qiang → Dropbox (ORNL) → Workshops → RAMS_2021 Search RAMS_2021 5 V Organize 🔻 New folder Name Date modified Туре Size 📌 Quick access BackUpPCRs 11/4/2021 12:48 PM File folder Desktop PG3_42702-2_300K DAT File 204 KB 11/11/2018 8:48 AM Downloads PG3_42704-2_10K 204 KB 11/11/2018 12:39 PM DAT File 🗄 Documents 🚿 Network Pictures 🖉 🖈 CrSbSe3 Example2_TOF_C POWGEN RAMS_2021 🗦 Dropbox (ORNL) 327 a 2020_MAGSTR 2322 🚚 ACA 2021 File name: PG3_42702-2_300K 1. X,Y d, ta + INSTRM=10 \sim <u>O</u>pen Cancel

Automatic search of background points

WinPLOTR message:

The BG_300K.BGR has been created: it contains 63 background points

Refinement tab

Files Editor of PCR Files		-
File Editor Tools Templates	Help Exit	
🗋 🖄 🚍 层 🗞	1 🖉 🧇 👑 🗱 💥 🎇 📲 🐂 🌘 🗙	
	_ Information	
	Title type of job' Rietveld. Integrated Intensities	General
etinement Information	×	Detterme
les of Refinement: 1		Patterns
on Oriterium of Covernence	Belavation Factors for Shifts	Phases
rced Termination when shifts < 0.10 x E.S.D.		
hers: None	Atomic 1.00 Anisotropic 1.00 Profile 1.00 Global 1.00	Refinement
eflections ordering		Constraints
Only at the first cycle C Each cycle	Bragg R-Factor excluding reflections limiting excluded regions	Box/Restraints
attem 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5	Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 P	Output
	ок	
Refinement weighting model	Atoms Prop. Vectors	
Least Squares Background	Cancel Patterns	4/11/2021 14:43:4
C Maximum Likelihood Instrumental	C1 C2 C3 C4 C5 C6 C7	
C Unit Weights Micro-Absorption	Profile Micro-Structure	
	HKL Shifts Further Parameters	
Reduction feature of numbers of data asister. 0		

Linear interpolation between a set of Background Points: Pattern 1

Interpolat	ion Method —			C Cubic Splines Interpolation
- Informatio	on	<u>o</u> <u>–</u>		
	2Theta	Counts		
	0.000	0.000	=	Refine All Fix All
2	0.000	0.000		3
3	0.000	0.000		Import from Background File
4	0.000	0.000		
,				
		ОК		Cancel

SPALLATION NEUTRON SOURCE

Refinement-Profile tab

kop Citetuum of Covergence orced Termination when shifts < 0.10 orced Termination when shifts < 0.10 X there: None Atomic 1.00 Anisotropic 1.00 Profile Profile <th>Rep Citetum of Covergence orced Termination when shifts < 010 x E.S.D. Reference weighting 2 Only at the first cycle C Each cycle Reference weighting model Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 4 Pattern 4 Pattern 5 Pattern 4 Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 4 Pattern 4 Pattern 5 Pattern 5 Pattern 5 Pattern 6 Pattern 7 Pattern 7 Pattern 7 Pattern 8 Pattern 9 Pattern 9 Pattern 9 Pattern 1 Pattern 2 Pattern 1 Pattern 2 Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 4 Pattern 4 Pattern 4 Pattern 5 Pattern 5 Pattern 4 Pattern 4 Pattern 4 Pattern 4 Pattern</th> <th>Stop Criterium of Cove</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Rep Citetum of Covergence orced Termination when shifts < 010 x E.S.D. Reference weighting 2 Only at the first cycle C Each cycle Reference weighting model Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 4 Pattern 4 Pattern 5 Pattern 4 Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 4 Pattern 4 Pattern 5 Pattern 5 Pattern 5 Pattern 6 Pattern 7 Pattern 7 Pattern 7 Pattern 8 Pattern 9 Pattern 9 Pattern 9 Pattern 1 Pattern 2 Pattern 1 Pattern 2 Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 4 Pattern 4 Pattern 4 Pattern 5 Pattern 5 Pattern 4 Pattern 4 Pattern 4 Pattern 4 Pattern	Stop Criterium of Cove								
arced Termination when shifts < 0.10 x ES D. there: None Porter 100 Arisotropic 1.00 Profile 1.00 Global 1. Atomic 1.00 Arisotropic 1.00 Profile 1.00 Global 1. Patient source C Each cycle Bragg R-Factor excluding reflections limiting excluded regions attem 1 Patien 2 Patien 3 Patien 4 Patient 5 Patien • • Refinement weighting model C Least Squares Background C Unit Weights Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Refinements Background Coefficients Background Coefficients Background Coefficients Background Coefficients Background Coefficients Background Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points: 0 ± HIL Shifts Reduction factor of number of data points Reduction factor of number of data points Red	acced Termination when shifts < 0.10 × ESD. thes: None Vertex Verte		rgence			Relaxation Fa	actors for Shifts			
Here: None Anonic 1.00 Anisotropic 1.00 Profile 1.00 Global 1.1 Reflections ordering Control Control Bragg R-Factor excluding reflections limiting excluded regions attern 1 Pattern 2 Pattern 3 Pattern 5 Pattern 4 Pattern 5 Phase 5 Phase 6 P.	Where: None Atomic 1.00 Anisotropic 1.00 Profile 1.00 Global 1.1 Reflections ordering C C Each cycle Bragg R-Factor excluding reflections limiting excluded regions attem 1 Patem 2 Patem 3 Patem 4 Patem 5 Patem 4 Patem 5 Phase 5 Phase 6 P.	Forced Termination wh	ien shifts < 0.10	x E.S.D.					_	
Belections ordering C Doly at the first cycle E Bragg R-Factor excluding reflections limiting excluded regions attem 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 4 Pattern 5 Phase 6 P. Refinement weighting model Background Instrumental OK Patterns Potterns Prop. Vectors C Loast Squares Background Instrumental C 5 C 6 C 7 Micro-Absorption Reduction factor of number of data points: 0 ÷ Instrumental Instrumental Instrumental Coefficients 10.000 v 0.0000 v 0.0000 v Instrumental Instrumental Instrumental Coefficients 10.000 v 0.0000 v 0.0000 v Instrumental Instrumental Instrumental Instrumental Coefficients 10.000 v 0.0000 v 0.0000 v Instrumental Instrumental <th>Reflections ordering C Each cycle Bragg R-Factor excluding reflections limiting excluded regions Refinement weighting model Pattern 3 Pattern 4 Pattern 5 Pattern • • • • • • • • • • • • • • • • • • •</th> <th>Others: None</th> <th></th> <th></th> <th>•</th> <th>Atomic 1</th> <th>.00 Anisotropic</th> <th>1.00 Profile 1.00</th> <th>Global 1.</th>	Reflections ordering C Each cycle Bragg R-Factor excluding reflections limiting excluded regions Refinement weighting model Pattern 3 Pattern 4 Pattern 5 Pattern • • • • • • • • • • • • • • • • • • •	Others: None			•	Atomic 1	.00 Anisotropic	1.00 Profile 1.00	Global 1.	
C ONJy at the first cycle C Each cycle Bragg R-Factor excluding reflections limiting excluded regions attem 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 4 Pattern 5 Phase 6 P. Refinement weighting model Background Instrumental OK Atoms Prop. Vectors C Loast Squares Background Instrumental Cancel Patterns 0 5 C 5 C 6 C 7 Reduction factor of number of data points: 0 ÷ Instrumental Instrument	Cody at the first cycle C Each cycle Bragg R-Factor excluding reflections limiting excluded regions Tattem 1 Pattem 2 Pattem 3 Pattem 4 Pattem 5 Pattem 4 Pattem 5 Phase 5 Phase 6 P. Refinement weighting model Background Instrumental OK Pattems Pottem Pattems Pottem Prop. Vectors C Link Weights Background Instrumental Cancel Pattems C 5 C 6 C 7 Reduction factor of number of data points: 0 ± 0 ± Micro-Absorption Micro-Structure HKL Shifts Further Parameters Factors Scale 2 2 2 2 2 2 0000 90.000	Reflections ordering -								
attern 1 Pattern 2 Pattern 3 Pattern 5 Pattern 1 Performent weighting model Background NK Pattern 3 Phase 4 Phase 5 Phase 6 P. Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 4 Pattern 5 Phase 6 P. Pattern 2 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 P. Pattern 3 Data Squares Background Instrumental	Attern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 4 Pattern 5 Pattern 4 Pattern 5 Phase 5 Phase 6 P. Refinement weighting model Instrumental Instrumental Image: Cancel Image: Cancel </td <td> Only at the first cyc </td> <td>le C Each</td> <td>cycle</td> <td></td> <td>🗖 Bra</td> <td>agg R-Factor excluding</td> <td>reflections limiting excl</td> <td>uded regions</td>	 Only at the first cyc 	le C Each	cycle		🗖 Bra	agg R-Factor excluding	reflections limiting excl	uded regions	
Refinement weighting model Background Atoms Prop. Vectors C Least Squares Instrumental Cancel Patterns C 1 C 2 C 1 C 5 C 6 C 7 Profile Micro-Absorption Micro-Absorption Micro-Absorption Micro-Structure Reduction factor of number of data points: 0 - - Micro-Absorption Reduction factor of number of data points: 0 - - - Micro-Structure File Parameters: Phase 1 Patterns - - - - - actors Scale 0 0.0000 0 0.0000 0 - - - - - Coefficients 10.000 v 3.785100 v 13.424000 v 90.000 90.000 90.000 90.000 -	Refinement weighting model Background © Least Squares Background © Maximum Likelhood Instrumental © Unt Weights Micro-Absorption Reduction factor of number of data points: 0 ÷ File Parameters: Phase 1 Pattern 1 Further Parameters Factors 2 vr Coefficients 10.000 v 0 0.0000 v Scale 2 vr Coefficients 13.424000 v 90.000 v Scale 0.0001 v 0.00000 v FWHM / Shape Parameters Preferred Orientation FWHM / Shape Parameters Preferred Orientation FWHM Parameters Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 -0.007600 0.000300 0.000000 Shape Parameters Extinc Abs1 Abs2 Cancel OK OK 0 0.000000 0.000000 OK	Pattern 1 Pattern 2	Pattern 3 Pattern	4 Pattern 5 Pat	ttem 💶 🕨	Phas	e 1 Phase 2 Phase	3 Phase 4 Phase 5	Phase 6 P	
Refinement weighting model Atoms Prop. Vectors C Least Squares Instrumental Cancel Patterns C 5 C 5 C 7 C Unit Weights Micro-Absorption Micro-Absorption Micro-Absorption Micro-Absorption Reduction factor of number of data points: 0 ± 1 C 2 C 1 C 5 C 5 C 7 Micro-Structure HKL Shifts Further Parameters Further Parameters Further Parameters file Parameters: Phase 1 Pattern 1 Further Parameters Further Parameters coefficients 10 000 V 0 0000 V 0 0000 V 90 000 V 90 000 V Coefficients 10 4000 V 3 785100 V 13 424000 V 90 000 V 90 000 V 90 000 V 90 000 V FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Refine All Fix All Cancel Coefficients 0.004100 -0.007600 0.006300 0.000000 Sancel OK FWHM / Shape Parameters Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.000000 0.000000 OK Coefficients 0.000000 0.000000 1.000000 <t< td=""><td>Refinement weighting model Atoms Prop. Vectors Cancel Naximum Likelihood Instrumental Profile Micro-Absorption Reduction factor of number of data points: 0</td><td></td><td></td><td></td><td></td><td>ОК</td><td></td><td></td><td></td></t<>	Refinement weighting model Atoms Prop. Vectors Cancel Naximum Likelihood Instrumental Profile Micro-Absorption Reduction factor of number of data points: 0					ОК				
C Least Squares Background Cancel Maximum Likelihood Instrumental Cancel C Unit Weights Micro-Absorption Micro-Absorption Reduction factor of number of data points: 0 ÷ Micro-Absorption File Parameters: Phase 1 Pattern 1 Further Parameters Coefficients 10.000 🗸 0.0000 🗸 Coefficients 10.000 🗸 0.0000 🗸 Coefficients 9146000 🗸 3.785100 🗸 FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation FWHM / Shape Parameters Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.000100 0.000300 0.000000 OK Shape Parameters Exponential Decay Parameters Preferred Orientation Preferred Orientation FWHM / second wavelength Gancel OK OK	C Least Squares Background Cancel Maximum Likelihood Instrumental Micro-Absorption Micro-Structure Reduction factor of number of data points: 0 1 C C 5 C 7 file Parameters: Phase 1 Pattern 1 Further Parameters Further Parameters file Parameters: Phase 1 Pattern 1 Factors Scale 0 0 0000 0 0000 90.000	Refinement weigh	iting model				Atoms		Prop. Vectors	
C Maximum Likelihood Instrumental Image: Construction of the second wavelength C Unit Weights Micro-Absorption Profile Micro-Structure Reduction factor of number of data points: 0 ÷ 1 ÷ 1 full Strumenters File Parameters: Phase 1 Pattern 1 Further Parameters Scale 0 0.0000 f 0.0000 f 90.000 f 90.000 f Coefficients 10.000 v 3.785100 v 13.424000 v 90.000 f 90.000 f 90.000 f FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Performed Niethall Prefile Refine All FWHM Parameters Sig_2 Sig_1 Sig_0 Z1 Cancel OK Coefficients 0.000000 0.000000 1.000000 0.000000 OK OK Cancel OK	C Maximum Likelihood Instrumental Imstrumental	Ceast Square	3 _	Background		ancel	Patterns			
C Unit Weights Micro-Absorption Reduction factor of number of data points: 0 ÷ file Parameters: Phase 1 File Parameters: Phase 1 Parameters: Parameters Parameters: Prefile HKL Shifts Further Parameters Coefficients 10.000 v Oction 0.0000 v Parameters Preferred Orientation FWHM / Shape Parameters Exponential Decay Parameters FWHM Parameters Refine All Shape Parameters Cancel OK OK Coefficients 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	Intervention Micro-Absorption Reduction factor of number of data points: 0 ÷ file Parameters: Phase 1 Pattern 1 Factors 0.0000 Coefficients 10.000 Ocefficients 10.000 Ocefficients 10.000 Ocefficients 10.000 Prefile Micro-Structure FWHM / Shape Parameters Exponential Decay Parameters FWHM Parameters Sig_1 Sig_2 Sig_1 Sig_2 Sig_1 Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.00000 Oction 0.00000 Nape Parameters Refine All Fix All Abs1 Abs2 OK OK OK	C Maximum Like	elihood	Instrumental			C1 C2 C	05	$O_6 = O_7$	
Image: Very Weights Micro-Absorption Reduction factor of number of data points: 0 ÷ file Parameters: Phase 1 File Parameters: Phase 1 Parameters: Phase 2 PWHM / Shape Parameters Exponential Decay Parameters FWHM Parameters Preferred Orientation FWHM Parameters Refine All Parameters Cancel OK OK Coefficients 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0	Image: Control of the twelding of the parameters Image: Control of the parameters File Parameters: Phase 1 Pattern 1 Image: Control of the parameters Image: Conthe parameters Image: Control of the parameters <td>C</td> <td>-</td> <td></td> <td>1</td> <td></td> <td>Profile</td> <td>Mic</td> <td>m-Structure</td>	C	-		1		Profile	Mic	m-Structure	
HKL Shifts Further Parameters HKL Shifts Further Parameters File Parameters: Phase 1 Pattern 1 actors Coefficients 10.000 Ø o.00000 Ø Coefficients 10.000 Ø o.0000 Ø Coefficients 10.000 Ø o.0000 Ø Sociale gamma Coefficients Sociale gamma alpha beta gamma Coefficients Sig_1 alpha beta gamma Coefficients Sig_1 Sig_0 Z1 FWHM / Shape Parameters Refine All Coefficients 0.000000 Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients <th coe<="" colspa="2" td=""><td>HKL Shifts Further Parameters HKL Shifts Further Parameters Further Parameters Further Parameters File Parameters Parameters Scale 2 Coefficients 10.000 V 0.0000 V Coefficients 0.0000 V 0.0000 V 90.000 V 90</td><td> Unit Weights </td><td></td><td>Micro-Absorption</td><td></td><td></td><td>Tione</td><td>THIC</td><td>io-sudcture</td></th>	<td>HKL Shifts Further Parameters HKL Shifts Further Parameters Further Parameters Further Parameters File Parameters Parameters Scale 2 Coefficients 10.000 V 0.0000 V Coefficients 0.0000 V 0.0000 V 90.000 V 90</td> <td> Unit Weights </td> <td></td> <td>Micro-Absorption</td> <td></td> <td></td> <td>Tione</td> <td>THIC</td> <td>io-sudcture</td>	HKL Shifts Further Parameters HKL Shifts Further Parameters Further Parameters Further Parameters File Parameters Parameters Scale 2 Coefficients 10.000 V 0.0000 V Coefficients 0.0000 V 0.0000 V 90.000 V 90	 Unit Weights 		Micro-Absorption			Tione	THIC	io-sudcture
Reduction factor of number of data points: 0 ± file Parameters: Phase 1 Pattern 1 actors 2 yr Coefficients 10.000 ♥ Coefficients 10.000 ♥ Coefficients 10.000 ♥ Coefficients 3.785100 ♥ Coefficients 9.146000 ♥ Scale 3.785100 ♥ Coefficients 9.146000 ♥ Scale 3.785100 ♥ FWHM / Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Exponential Decay Parameters Coefficients 0.004100 -0.007600 Coefficients 0.004100 -0.007600 Coefficients 0.004100 -0.007600 Shape Parameters Cancel OK OK Cancel OK Chine FWHM for second wavelength Image	Reduction factor of number of data points: 0 ± file Parameters: Phase 1 Pattern 1 Factors 2 ur Coefficients 10.000 ♥ Optimizer 3.785100 ♥ Stape Parameters Exponential Decay Parameters FWHM / Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Exponential Decay Parameters FWHM Parameters Coefficients 0.004100 Coefficients 0.004100 -0.007600 0.006300 Shape Parameters Cancel OK Coefficients 0.000000 1.000000 OK T Refine FWHM for second wavelength Other U2 V2 W2 Other						HKL Shifts	Furth	er Parameters	
file Parameters: Phase 1 Pattern 1 Sectors Coefficients 10.000 Coefficients 10.000 Coefficients 10.000 Coefficients 3.785100 Coefficients 3.785100 State 3.785100 Coefficients 90.000 State 90.000 Coefficients 90.000 Stage Parameters Refine All FWHM / Shape Parameters Sig_0 Coefficients 0.004100 -0.007600 0.006300 Coefficients 0.004100 -0.007600 0.006300 Coefficients 0.004100 -0.007600 0.006300 Coefficients 0.000000 Coefficients 0.0000000 Coeffic	file Parameters: Phase 1 Pattern 1 Factors Coefficients 10.000 ▼ Coefficients 10.000 ▼ Coefficients 10.000 ▼ Coefficients 10.000 ▼ Coefficients 10.46000 ▼ State 3.785100 ▼ Coefficients 13.424000 ▼ 90.000 □ 90.000 □ FWHM / Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Exponential Decay Parameters FWHM Parameters Refine All FWHM Parameters Cancel Coefficients 0.004100 □ -0.007600 □ 0.000300 □ Shape Parameters Cancel OK Coefficients 0.000000 □ 1.000000 □ OK T Refine FWHM for second wavelength U2 V2 W2 Coefficients U2 V2 W2	Reduction factor of	number of data poin	ts: 0 🕂						
File Parameters: Phase 1 Pattern 1 Factors Scale Coefficients 10.000 0 Ocefficients 10.000 0 Ocefficients 10.000 0 Ocefficients 10.000 0 Ocefficients 13.424000 0 Societients 13.424000 0 State 90.000 0 FWHM / Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Sig_2 Sig_2 Sig_1 Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 -0.007600 0.006300 Shape Parameters Cancel OK OK Coefficients 0.000000 0.000000 1.0000000	file Parameters: Phase 1 Pattern 1 Factors Coefficients 10.000 ♥ Coefficients 10.000 ♥ Coefficients 10.000 ♥ Coefficients 9146000 ♥ Scale 0.0000 ♥ Coefficients 9146000 ♥ Shape Parameters Exponential Decay Parameters FWHM / Shape Parameters Coefficients Outlob -0.007600 0.006300 Coefficients 0.004100 -0.007600 Shape Parameters Cancel OK OK Coefficients 0.000000 U2 V2									
Scale Xr Coefficients 10.000 v 0.0000 v Cell Parameters 3 alpha beta gamma Coefficients 9 13.424000 v 90.000 v 90.000 v 90.000 v FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Refine All ix All FWHM / Shape Parameters Sig_2 Sig_1 Sig_0 Z1 ix All Coefficients 0.004100 -0.007600 0.006300 0.000000 ix All Coefficients 0.004100 -0.007600 0.006300 0.000000 ix All Coefficients 0.000000 0.000000 0.000000 ix All Coefficients 0.000000 0.000000 ix All ix All Cancel OK OK oK oK	Factors Scale 2 vr Coefficients 10.000 0.0000 3 Cell Parameters a b alpha beta gamma Coefficients 9146000 3.785100 13.424000 90.000 90.000 90.000 FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Orientation Preferred Orientation Preferred Orientation Preferred Orientation Orientation Orientation Orientation Orientatio	ofile Parameters: Ph	ase 1 Pattern 1							
Coefficients Scale Vr Coefficients 10.000 0.0000 3 Cell Parameters 3 a b alpha beta gamma Coefficients 9.126000 3.785100 13.424000 90.000	Pactors Scale Xr Coefficients 10.000 0.0000 3 Cell Parameters a b alpha beta gamma Coefficients 3.785100 13.424000 90.000 90.000 90.000 FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Orientati	Frankright								
Scale Xr Coefficients 10.000 0.0000 3 Cell Parameters 3 alpha beta gamma Coefficients 91/26000 3.785100 13.424000 90.000 90.000 90.000 FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Refine All Fix All Coefficients 0.004100 -0.007600 0.006300 0.000000 Fix All Coefficients 0.004100 -0.007600 0.006300 0.000000 Fix All Coefficients 0.000000 0.000000 0.000000 OK Cancel OK Coefficients 0.000000 0.000000 0.000000 OK	Scale xr Coefficients 10.000 0.0000 3 Cell Parameters a b alpha beta gamma Coefficients 9.146000 3.785100 13.424000 90.000 90.000 90.000 FWHM / Shape Parameters Exponential Decay Parameters Preferred Orientation Orientation Orientation Preferred Orientation Preferred Orientation Preferred Orientation Preferred Orientation Orientation Orientation Orientation Orienta	Factors		- 2						
Coefficients 0.000/V 0.00/V 0.00/V 0.00/V 0.00/V 0.00/V 0.00/V 0.00/V 0.00/V 0.00/V 0.	Coefficients Stage Stage Cancel FWHM / Shape Parameters Exponential Decay Parameters Preferred Oxientation FWHM / Shape Parameters Exponential Decay Parameters Preferred Oxientation FWHM / Shape Parameters Exponential Decay Parameters Preferred Oxientation FWHM Parameters Refine All FWHM Parameters Sig_2 Sig_1 Sig_0 Z1 FX All Coefficients 0.004100 -0.007600 0.006300 0.000000 FX All Shape Parameters Extinc Abs1 Abs2 OK OK Coefficients 0.000000 0.000000 1.0000000 OK OK		Scale 10.000		or 0000					
Bit Addition Bit Addit Bit Addition Bit Addition <td>Coefficients B alpha beta gamma Coefficients 9.146000 3.785100 13.424000 90.000 90</td> <td>Coofficients</td> <td></td> <td>•</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Coefficients B alpha beta gamma Coefficients 9.146000 3.785100 13.424000 90.000 90	Coofficients		•		1				
a b alpha beta gamma Coefficients 9146000 3.785100 13.424000 90.0000 90.0000 90.000	a b alpha beta gamma Coefficients 9.146000 3.785100 7 13.424000 90.000	Coefficients								
Coefficients Statistication Statistication Statistication Statistication Statistication Refine All Fix All Refine All Fix All Fix All Cancel OK OK <t< td=""><td>Coefficients Statedod Statedod</td><td>Coefficients Cell Parameters</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Coefficients Statedod	Coefficients Cell Parameters								
Exponential Decay Parameters Preferred Orientation FWHM / Shape Parameters Exponential Decay Parameters Refine All FWHM Parameters Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 -0.007600 0.0006300 0.000000 Shape Parameters Cancel OK Coefficients 0.000000 1.000000 OK	Exponential Decay Parameters Preferred Orientation FWHM / Shape Parameters Exponential Decay Parameters Refine All FWHM Parameters 0.004100 0.007600 0.006300 0.000000 Coefficients 0.004100 0.007600 0.006300 0.000000 Fix All Shape Parameters Cancel OK OK OK Extinc Abs1 Abs2 OK OK Refine FWHM for second wavelength U2 V2 W2 OK	Coefficients Cell Parameters	a	b		alpha	beta	gamma		
Extinc Abs1 Abs2 OK Coefficients 0.000000 1.000000 0.000000 OK	Exponential Decay Farameters Exponential Decay Farameters Refine All FWHM Parameters Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 -0.007600 0.0006300 0.000000 Coefficients 0.004100 -0.007600 0.0006300 0.000000 Fix All Shape Parameters Cancel OK OK OK Refine FWHM for second wavelength U2 V2 W2 OK	Coefficients Cell Parameters Coefficients Coefficients	a 9.146000 ▼	b 3.785100 ₩	13.42400	alpha 0 🗸 9	0.000 9	gamma 0.000 90	0.000	
EVHM Parameters Refine All Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 0.007600 0.000300 0.000000 Shape Parameters Cancel Cancel OK Coefficients 0.000000 1.000000 OK OK	EVHM Parameters Refine All Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 0.007600 0.0006300 0.000000 Shape Parameters Cancel Cancel OK Coefficients 0.000000 1.000000 OK OK Refine PWHM for second wavelength U2 V2 W2 Coefficients Cancel	Coefficients Cell Parameters Coefficients Coefficients Coefficients	a 9.146000 7	b 3.785100 ♥	13.42400	alpha 0 🔽 9	0.000 9	gamma 0.000 90	0.000	
Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 -0.007600 0.006300 0.000000 Shape Parameters Cancel > Coefficients 0.000000 1.000000 OK Coefficients 0.000000 1.000000 OK	Sig_2 Sig_1 Sig_0 Z1 Coefficients 0.004100 -0.007600 0.006300 0.000000 Shape Parameters Cancel Cancel OK Coefficients 0.000000 1.000000 OK OK Cancel OK OK OK OK	Coefficients Cell Parameters Coefficients FWHM / Shape Para	a 9.146000 weters Exponentia	b 3.785100 🗸 al Decay Paramete	13.42400	alpha 0 V 9 entation	0.000 9	gamma 0.000 🗂 90	0.000	
Coefficients 0.004100 0.004000 0.000000 0.000000 > Shape Parameters Cancel OK Coefficients 0.000000 1.000000 OK OK Cancel 0.000000 1.000000 OK OK	Coefficients 0.004100 0.004000 0.000000 0.000000 Shape Parameters Cancel OK OK Coefficients 0.000000 1.000000 OK Refine PWHM for second wavelength U2 V2 W2 Coefficients T T T	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter	a 9.146000 weters Exponentia s	b 3.785100	rs Preferred Orie	alpha 0 V 9 entation	beta 0.000 9	gamma 0.000 90	0.000	
Shape Parameters Cancel Extinc Abs1 Abs2 Coefficients 0.000000 1.000000 T Refine FWHM for second wavelength	Shape Parameters Cancel Extinc Abs1 Abs2 OK Coefficients 0.00000 1.000000 OK T Refine FWHM for second wavelength U2 V2 W2 Coefficients T T T T	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter	a 9.146000 V meters Exponentia s Sig_2 0.004100	b 3.785100	13.42400 rs Preferred Orie	alpha 0 ♥ 9 entation Sig_0	21	0.000 9(efine All	
Extinc Abs1 Abs2 OK Coefficients 0.000000 1.000000 Coefficients OK	Extinc Abs1 Abs2 Coefficients 0.000000 0.000000 0.000000 Image: Refine FWHM for second wavelength Image: Refine FWHM for second wavelength Image: Refine FWHM for second wavelength Image: U2 V2 W2 Image: Refine FWHM for second wavelength	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients Coefficients Coefficients	a 9.146000 v meters Exponentia s Sig_2 0.004100	b 3.785100 al Decay Paramete Sig_1 - 0.0	13.42400	alpha Image: station Sig_0 0.006300	21 0.00000000000000000000000000000000000	0.000 90	efine All	
Coefficients 0.000000 0.000000 1.000000 OK C fine FWHM for second wavelength Use Use <t< td=""><td>Coefficients O.000000 O.000000 O.000000 O.000000 Refine FWHM for second wavelength U2 V2 W2 Coefficients Image: Coefficients Image: Coefficients Image: Coefficients</td><td>Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients Coefficients Shape Parameter</td><td>a 9.146000 7 meters Exponentia s 5 9.2 0.004100</td><td>b 3.785100 al Decay Paramete Sig_1 -0.0</td><td>13.42400 rs Preferred One</td><td>alpha Image: station Sig_0 0.006300</td><td>21 0.00000000000000000000000000000000000</td><td>0.000 90</td><td>efine All</td></t<>	Coefficients O.000000 O.000000 O.000000 O.000000 Refine FWHM for second wavelength U2 V2 W2 Coefficients Image: Coefficients Image: Coefficients Image: Coefficients	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients Coefficients Shape Parameter	a 9.146000 7 meters Exponentia s 5 9.2 0.004100	b 3.785100 al Decay Paramete Sig_1 -0.0	13.42400 rs Preferred One	alpha Image: station Sig_0 0.006300	21 0.00000000000000000000000000000000000	0.000 90	efine All	
Refine FWHM for second wavelength	Refine FWHM for second wavelength	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients < Shape Parameters	a 9.146000 V meters Exponentia s Sig_2 0.004100	b 3.785100	13.42400	alpha 0 station Sig_0 0.006300	Z1 0.0000	0.000 90	efine All Fix All	
Hetrine F-WHM for second wavelength	Hetne HWHM for second wavelength U2 V2 W2 Coefficients I I I	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients < Shape Parameters Coefficients Coefficient Coe	a 9.146000	b 3.785100 al Decay Paramete Sig_1 -0.0 Abs1	13.42400 rs Preferred One	alpha Image: set at long Sig_0 0.006300	21 0.00000000000000000000000000000000000	0.000 90	efine All Fix All Cancel	
	U2 V2 W2 Coefficients	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients < Shape Parameters Coefficients Co	a 9.146000 V s Sig_2 0.004100 Extinc 0.000000	b 3.785100 al Decay Paramete Sig_1 -0.0 Abs1 0.0	13.42400 rs Preferred Orie 107600	alpha Image: state	Z1 0.00000000000000000000000000000000000	0.000 90	efine All Fix All Cancel	
U2 V2 W2	Coefficients	Coefficients Cell Parameters Coefficients FWHM / Shape Para FWHM Parameter Coefficients < Shape Parameters Coefficients Coefficients Refine FWHM	a 9.146000 v meters Exponentia s Sig_2 0.004100 Extinc 0.000000 for second wavelen	b 3.785100 al Decay Paramete Sig_1 -0.0 Abs1 0.0 gth	13.42400 rs Preferred Orie 107600	Abs2	21 0.00000000000000000000000000000000000	0.000 90	efine All Fix All Cancel	

=> Phase: 1
=> Bragg R-factor: 15.01
=> RF-factor : 10.72
=> Normal end, final calculations and writing...

=> CPU Time: 0.898 seconds => 0.015 minutes

=> END Date:04/11/2021 Time => 15:52:18.456

20000 40000 60000 80000 100000120000140000160000180000220000 TOF (usec)

Add the refinement on the peak profile coefficients Gam_2, Gam_1, and Gam_0

Profile Parameters: Phase 1 Pattern 1

_] 🕑 🛄 📊 🌾 🔏 🖉 🖤 👭 🖗 💯 🥘		
	- Information	
	Title, type of job: Rietveld, Integrated Intensities, Simulated Annealing,	General
	Type of Pattems, profile, background, diffraction geometry, user-given scattering factors	Patterns
Editor	Phase name, type of calculations (JBT), ATZ, contribution to patterns, symmetry,	Phases
	Number of cycles, relaxation factors, access to patterns and phases (atoms and profile)	Refinement
	Constraints definitions, adding, deleting, modifying	Constraints
	Fixing range of parameters, distances, angles, magnetic moments and linear restraints	Box/Restraints
17 21 20 29 33 37 41 45 49 20(*)	Output options for patterns and phases: Reflection lists, Fourier, distances, BVS	Output
Copyright (c) 2002-2005. JGP - JRC		

=> Phase: 1

=> Bragg R-factor: 7.922

=> RF-factor : 7.961

=> Normal end, final calculations and writing...

=> CPU Time: 3.594 seconds

=> 0.060 minutes

=> END Date:04/11/2021 Time => 15:49:06.360

20000 40000 60000 80000 100000120000140000160000180000220000 TOF (usec)

CAK RIDGE National Laboratory

SPALLATION NEUTRON SOURCE

Refinement-Atoms tab (to refine atomic positions and temperature factors B)

Ta Refinement Information	>
Cycles of Refinement: 5	
Stop Criterium of Covergence Forced Termination when shifts < 0.10 x E.S.D. Others: None	Relaxation Factors for Shifts Atomic 1.00 Anisotropic 1.00 Profile 1.00 Global 1.00
Reflections ordering C Only at the first cycle Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern (Bragg R-Factor excluding reflections limiting excluded regions Phase 1 Phase 2 Phase 3 Phase 5 Phase 6 P
Refinement weighting model Background Image: Comparison of the second	OK Atoms Prop. Vectors Cancel Patterns C 1 C 2 C 3 C 4 C 5 C 6 C 7 Profile Micro-Structure
Reduction factor of number of data points:	HKL Shifts Further Parameters

Refinement Information	>
Cycles of Refinement: 5 ÷	
Stop Criterium of Covergence Forced Termination when shifts < 0.10 x E.S.D. Others: None	Atomic 1.00 Anisotropic 1.00 Profile 1.00 Global 1.00
Reflections ordering	Braco R-Factor excluding reflections limiting excluded regions
Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern	Phase 1 5 Phase 3 Phase 4 Phase 5 Phase 6 P.
Refinement weighting model Image: Construction of the second s	Atoms Prop. Vectors Cancel Patterns
C Maximum Likelihood Instrumental	
C Unit Weights Micro-Absorption	Profile Micro-Structure
Reduction factor of number of data points:	HKL Shifts Further Parameters

	-				-												
	Label	N	ур	X		Y		Z		В		Occ		Them.	Fact.	^	Refine Positions
Atom # 1	Sb	Sb		0.0295	V	0.25	000	0.657	86	1.0000		0.5000	D 🗌 Isc	tropic			
Atom # 2	Cr	Cr		0.1549	X	0.25	000	0.044	60	1.0000		0.5000	lsc	tropic			Refine B_isc
Atom # 3	Se3	Se		0.1718	30 🔽	0.25	000	0.484	50	1.0000		0.5000	lsc	tropic	_		
Atom # 4	Se2	Se		0.2848	30 🔽	0.25	000	0.212	80 🔽	1.0000		0.5000	lsc	tropic		~	Ketine B_aniso
#																	ок
# # #			-		_		F				F				F		
# # # <			-1												, ,	×	
# # < Special Form	Factors		-†												, ,	·	
# # < Special Form	Factors SASH-Typ	e	Aatrix	; j=1		=2	=3	N. Coeff.	Indice	s #1	#2	#3	#4	#5	> #6	↓	
# # < Special Form #	Factors SASH-Typ Spherical	e I	Matrix	; j=1		=2	=3	N. Coeff.	Indice	s #1	#2	#3	#4	#5	#6	1~ ^	
# # # # \$pecial Form #	Factors SASH-Typ Spherical Spherical	ie I	Matrix	(j=1		=2 j	=3	N. Coeff.	Indice	s #1	#2	#3	#4	#5	#6	~	

- => Bragg R-factor: 8.640
- => RF-factor : 6.833

=> Conv. not yet reached -> [Max] Shift(Biso_Cr_ph1)/(eps*Sigma)= -1.08 abs> 1

=> Normal end, final calculations and writing...

=> CPU Time: 3.750 seconds => 0.062 minutes

=> END Date:04/11/2021 Time => 17:15:08.698

20000 40000 60000 80000 100000120000140000160000180000220000 TOF (usec)

III. Save the PCR file at 300 K as a new PCR to refine the structural parameters at 10 K (T<Tm).

Image: Constraint of PCR Files File Editor Image: Constraint of PCR Files Image: Constrating to PCR Files Ima	⁶ 響 ⁶ , • 。 ② ×	- 0 X	Title		×	
FullProf PCR Editor	Information Title, type of job: Rietveld, Integrated Intens Simulated Annealing, Type of Pattems, profile, background, diffrad geometry, user-given scattering factors Phase name, type of calculations (JBT), AT contribution to patterns, symmetry, Number of cycles, relaxation factors, access patterns and phases (atoms and profile) Constraints definitions, adding, deleting, modifying	tties. General ction Patterns Z. Phases sto Refinement Constraints	Calculations Calculations Refinement/Calculation of a Powder Dif Refinement on Single Crystal Data / Inte Simulated Annealing Optimization (Integ Optimize calculations according to the provided of the provided	iffraction Profile tegrated Intensity Data grated Intensities) S.A particular options used in this Job	. Options Cancel	
Image: Transformed state Image: Transformed state <th image:<="" th=""><th>Fixing range of parameters, distances, angle magnetic moments and linear restraints Output options for patterns and phases: Reflection lists, Fourier, distances, BVS</th><th>s. Box/Restraints Output</th><th>Use Winplotr to g (see slide 12-13)</th><th>get the BG for PG3_42[·])</th><th>704-2_10K.dat</th></th>	<th>Fixing range of parameters, distances, angle magnetic moments and linear restraints Output options for patterns and phases: Reflection lists, Fourier, distances, BVS</th> <th>s. Box/Restraints Output</th> <th>Use Winplotr to g (see slide 12-13)</th> <th>get the BG for PG3_42[·])</th> <th>704-2_10K.dat</th>	Fixing range of parameters, distances, angle magnetic moments and linear restraints Output options for patterns and phases: Reflection lists, Fourier, distances, BVS	s. Box/Restraints Output	Use Winplotr to g (see slide 12-13)	get the BG for PG3_42 [·])	704-2_10K.dat
$\leftarrow \rightarrow \checkmark \uparrow$ \blacksquare « Dropbox (ORNL) » Workshops » RAMS_2	021 🗸 🖸 🔎 Search R	AMS_2021	Ele Programs Settings (P Dimensions Tools Edit Results Edit) A. WorkCORE/COREX.MA2228 Remote / AL Genetale()	46 122483.45800 17.17247 16 107487.45800 17.17247 − □ X		
Organize 👻 New folder			All and a set of the s	x As Save As	→ RAMS 2021 → Či O Search RAMS 2021	
✓ Quick access ▲ ● Desktop ▲ ● Downloads ● ● Documents ● ● Pictures ✓ ● BackUpPCRs ✓ File name: PG3_42702-2_300K File name: PG3_42704-2_10K Save as type: Fullprof Input File ▲ Hide Folders ▲	Date modified Ty 11/4/2021 2:10 PM Fit 11/4/2021 5:11 PM Fut 11/4/2021 5:17 PM Fut	rpe Size Size Size Size Size Size Size Siz	Image: Constraint of the constraint	Organize New folder	Date modified Type Size 11/4/2021 2:10 PM File folder 11/4/2021 5:27 PM BGR File 3 KB 11/4/2021 2:06 PM BGR File 3 KB	
		Salah Rep D	New Constitution of the co	File name: BG_10K.BGR Save as type: Save as background file (*.BGR)	6	

H /

H 💿 🕐 🖬 💶 🧶 🏕 📓 📲 🔛 🐛 🐛

∧ Hide Folders

8== 👻

Save

Use the BG for PG3_42704-2_10K.dat

CAK RIDGE National Laboratory REACTOR SOURCE

Refinement-Profile tab: unselect scale factor, Gam_2, Gam_1 and Gam_0 to refine lattice constants, the atomic positions and B factors

IDGE HIGH FLUX ISOTOPE

National Laboratory REACTOR

SPALLATION NEUTRON

SOURCE

III. Identify magnetic peaks/contributions and determine the propagation vector

IV. Symmetry analysis to obtain irreducible representations and Basic vectors using SARAh

a). Use SARAh webRefine – FullProf:

http://fermat.chem.ucl.ac.uk/spaces/willsgroup/web-software/sarah-refine-fullprof/

SARAh webRefine – FullProf

Two pieces of advice for using SARAh webRefine : 1. change your browser settings <evaluate>, it will look like nothing is happening for a few seconds. Look in the tab

-Andrew (February 2022)

SARAh webRefine – FullProf

Two pieces of advice for using SARAh webRefine : 1. change your browser settings to allow you to select where you save downloads (and overwrite file: <evaluate->, it will look like nothing is happening for a few seconds. Look in the tab '4. Help and Strategies' for more information.

-Andrew (February 2022)

Wolfram

1. Conventional basis vectors (as projected)	2. Stationary v combinatio	rector 3. Exchange mul ns	iplets 4. Help and strategies
Method 1. Conventional Select command (go	te for magnetic	ed basis vectors	metic phase present):
\Box Cr1 $\Gamma_1 \psi_1$	\Box Cr1 $\Gamma_4 \psi_1$	\Box Cr1 $\Gamma_7 \psi_2$]
$\Box \operatorname{Crl} \Gamma_1 \psi_1$ $\Box \operatorname{Crl} \Gamma_2 \psi_1$	$\Box \operatorname{Crl} \Gamma_4 \psi_1$ $\Box \operatorname{Crl} \Gamma_5 \psi_1$	$\Box \operatorname{Crl} \Gamma_7 \psi_2$ $\Box \operatorname{Crl} \Gamma_8 \psi_1$	
$\Box \operatorname{Crl} \Gamma_1 \psi_1$ $\Box \operatorname{Crl} \Gamma_2 \psi_1$ $\Box \operatorname{Crl} \Gamma_2 \psi_2$	$\Box \operatorname{Crl} \Gamma_4 \psi_1$ $\Box \operatorname{Crl} \Gamma_5 \psi_1$ $\Box \operatorname{Crl} \Gamma_6 \psi_1$	$\Box \operatorname{Crl} \Gamma_7 \psi_2$ $\Box \operatorname{Crl} \Gamma_8 \psi_1$	
 Cr1 Γ₁ ψ₁ Cr1 Γ₂ ψ₁ Cr1 Γ₂ ψ₂ Cr1 Γ₃ ψ₁ 	$\Box \operatorname{Crl} \Gamma_4 \psi_1$ $\Box \operatorname{Crl} \Gamma_5 \psi_1$ $\Box \operatorname{Crl} \Gamma_6 \psi_1$ $\Box \operatorname{Crl} \Gamma_6 \psi_2$	$\Box \operatorname{Crl} \Gamma_7 \Psi_2$ $\Box \operatorname{Crl} \Gamma_8 \Psi_1$	

anize 🔻 New folder					855 -	· 🔲	
0.11	^	Name	Date modified	Туре	Size		
Quick access	-	Jutorial TOF QZhang	11/14/2023 12:17 PM	File folder			
Desktop	*	edpcr.set	11/14/2023 2:13 PM	SET File	1 KB		
Downloads	*	fullprof.dir	11/14/2023 2:26 PM	DIR File	1 KB		
Documents	*	FullProf_CM	11/14/2023 11:10 AM	Microsoft PowerP	18,465 KB		
Pictures	*	FullProf_CM_bkup	11/14/2023 2:03 PM	Microsoft PowerP	18,465 KB		
CM		PG3_42704-2_10K	1 5:11 PM	DAT File	193 KB		
crystal and magnetic struct	ure	PG3_42704-2_10K.out	23 2:06 PM	OUT File	321 KB		
IC Studies		6 PG3_42704-2_10K	117 14/2023 2:06 PM	PCR File	8 KB		
I C_SCORES		A PG3_42704-2_10K	11/14/2023 2:06 PM	PRF File	325 KB		
		PG3_42704-2_10K.sum	11/14/2023 2:06 PM	SUM File	7 KB		
Dropbox (ORNL)		PG3_42704-2_10K_test.out	11/14/2023 2:26 PM	OUT File	1,378 KB		
327		PG3_42704-2_10K_test	11/14/2023 2:26 PM	PCR File	11 KB		
2020 MAGSTR		A PG3_42704-2_10K_test	11/14/2023 2:26 PM	PRF File	841 KB		
2022 OMI Workshop		PG3_42704-2_10K_test.sum	11/14/2023 2:26 PM	SUM File	10 KB		
		PG3_42704-2_10K_test1.fst	11/14/2023 2:26 PM	FST File	1 KB		
2322		PG3_42704-2_10K_test1.mic	11/14/2023 2:26 PM	MIC File	339 KB		
ACA_2021		PG3_42704-2_10K_test2.fst	11/14/2023 2:26 PM	FST File	2 KB		
All of my papers		PG3_42704-2_10K_test2	11/14/2023 2:26 PM	HKL File	51 KB		
Award		PG3_42704-2_10K_test2	11/14/2023 2:26 PM	MCIF File	3 KB		
Ba2CoO4		PG3_42704-2_10K_test2.mic	11/14/2023 2:26 PM	MIC File	1,224 KB		
Co3Sn2S2		PG3_42704-2_10K1.fst	11/14/2023 2:06 PM	FST File	1 KB		
CollabrationProjects		PG3_42704-2_10K1.mic	11/14/2023 2:06 PM	MIC File	339 KB		
COVID		PG2018B_HighRes_60Hz_b2_Ddep	11/4/2021 12:39 PM	IRF File	24 KB		
DesktonFiles							
Diff Group							
on_oroup							
DiffractionGroup	~						í

The generated PCR with the same name has been downloaded!

b): Use two softwares:

Fill in space group, K-vector and Atoms in SARAh-Representational Analysis

X

🔽 Be

·							-	
0.	62		1					
-M Symbol	Pnma		•		Sea	rch		
oint Group	D 2h 1		0					
umber	Hermann-Ma	aughin	Point Gro	oup				
58 59:1 59:2 60 61	Pnnn Pmmr Pmmr Pbcr Pbcc	1 1:1 1:2 1	D 2h D 2h D 2h D 2h D 2h D 2h	12 13 13 14 15	^	<u> </u>	Select	4
62 63 64	Pnma Cmcm Cmca	1 1 2	D 2h D 2h D 2h D 2h	16 17 18	¥	<u>+</u> _	UK	
om Positio	ns							×
ltom	×	Y	z		Edit	Atom	Accept	t Change
r	.15721	. 25	.0446	9		Del	ete Atom	
				```	2	Ac	Id Atom	
Name	0.15721 0.25	5000 0.0448 V	69				ОК	
Cor	mponents are sp with	pace separal the formats (	ted and c ).25 or 17	an 4)	ıte	rred		9
eturn atom to	o zeroth cell							

IR #	1, B	ASIS	VECTOR:	#	1	(ABS	OLU	TE NU	MBER:#	1)	
ATOM	1:	(	0	2		0)	+	i(	0	0	0)
ATOM	2:	(	0	-2		0)	+	i(	0	0	0)
ATOM	3:	(	0	2		0)	+	i(	0	0	0)
ATOM	4:	(	0	-2		0)	+	i(	0	0	0)
*****	- Wr										

IR #	2, E	BASIS	VECTOR:	#	1	(ABS	OLU	TE NU	MBER:#	2)	
ATOM	1:	(	2	0		0)	+	i(	0	0	0)
ATOM	2:	(	2	0		0)	+	i(	0	0	0)
ATOM	3:	(	-2	0		0)	+	i(	0	0	0)
ATOM	4:	(	-2	0		0)	+	i(	0	0	0)
IR #	2, 1	BASIS	VECTOR:	#	2	(ABS	OLU	TE NU	MBER:#	3)	
ATOM	1:	(	0	0		2)	+	i(	0	0	0)
ATOM	2:	(	0	0		-2)	+	i(	0	0	0)

****	*									
ATOM	4:	(	0	0	2)	+	i(	0	0	0)
ATOM	3:	(	0	0	-2)	+	i(	0	0	0)
ATOM	2:	(	0	0	-2)	+	i(	0	0	0)

IR	#	з,	BASIS	VECTOR:	#	1	(ABSOLUTE	NUMBER:#	4)

ATOM	1:	(	2	0	0)	+	i(	0	0	0)
ATOM	2:	(	2	0	0)	+	i(	0	0	0)
ATOM	3:	(	2	0	0)	+	i(	0	0	0)
ATOM	4:	(	2	0	0)	+	i(	0	0	0)

IR	#	з,	BASIS	VECTOR:	#	2	(ABS	OLU	TE NU	MBER:#	5)	
ATC	M	1:	: (	0	0		2)	+	i(	0	0	0)
ATC	M	2 :	: (	0	0		-2)	+	i(	0	0	0)
ATO	M	3:	: (	0	0		2)	+	i(	0	0	0)
ATO	M	4 :	: (	0	0		-2)	+	i(	0	0	0)
***	w.	k sk										

IR #	4,	BASIS	VECTOR:	#	1	(ABS	OLU	JTE NU	MBER:#	6)	
ATOM	1	: (	0	2		0)	+	i(	0	0	0
ATOM	2	: (	0	-2		0)	+	i(	0	0	0
ATOM	3	: (	0	-2		0)	+	i(	0	0	0
ATOM	4	: (	0	2		0)	+	i(	0	0	0
****	**										

#### Magnetic space group

MAGNETIC SPACE GROUPS (THE BLACK AND WHITE SHUBNIKOV GROUPS)

BV#			Shubnikov Grou	up Group number
1	IR# :	1	Pnma	62.441
2	IR# :	2	Pn'm'a'	62.449
3	IR# :	2	Pn'm'a'	62.449
4	IR# :	3	Pnm'a'	62.447
5	IR# :	3	Pnm'a'	62.447
 6	IR# 4	4	Pn'ma	62.443
7	IR# !	5	Pn'ma'	62.448
8	IR# (	6	Pnm'a	62.444
9	IR# (	6	Pnm'a	62.444
10	IR# '	7	Pn'm'a	62.446
11	IR# '	7	Pn'm'a	62.446
12	IR# (	8	Pnma'	62.445



#### Select a magnetic model and add it as the 2nd phase in the PCR

Generate PCR of  $\Gamma_3$  using **SARAh refine**.  $\Gamma_3$  moment in the *ac* plane

					😻 SARAh-Refine	– 🗆 ×
File <u>QSAS Controls</u> <u>EullProf Controls</u> Jopas Controls <u>View bar</u>	Yew Features!	😻 SARAh-Refine		- 🗆 ×	Eile GSAS Controls EullProf Controls Topas Controls View basis vectors Tools Help	*Video Help* New Features!
Load SARAh MAT file	The structions	Eile GSAS Controls EullProf Controls Topas Controls View bas	is vectors <u>T</u> ools <u>H</u> elp <u>*</u> Video Help* <u>N</u> ew Fea	tures!		Vinstructions
Generate/Edit.pcr file K-Vector Search	SARAh-Refine			V instantions		SARAh-Refine for FullProf A.S. Wills (Version: 9.0.13 May 2011)
Write FPStudio FST file	Please reference the use of SARAh as:	V Open SARAN MAT File				Please reference the use of SARAh as:
	A.S. Wills, Physica B 276,680(2000). Program available from	← → < ↑ 📴 > This PC > Windows (C:) > Program File:	s (x86) → SARAh	✓ Ŏ Search SARAh	SARAh- Generate/Edit FullProf 2K *.PCR File	B & Wille Dhusion B 276 680(2000) .
	1:Use GSAS or Fullprof or TODAS menus	Organize 👻 New folder		8== - 🔲 😮	• • • • • • • • • • • • • • • • • • • •	- Shubnikou and Normal Point Group Information
	2:Load SARAh .MAT file	Dv2Ti2O7 Paper A Name	Date modified Type	Size		Pt C Pt Gp Shub Group BNS Label
		ID Decuments	9/20/2010 2/44 DM Eile felder		A(1) Γ(1) Ψ(1) A(1) Γ(7) Ψ(11)	30 1/A Pnma 62.441
		Life Kovalev Files	5/9/2019 2:12 PM File folder		$\square$ A(1) $\Gamma$ (2) $\Psi$ (2) $\square$ A(1) $\Gamma$ (8) $\Psi$ (12) $\square$ A(1) $\Gamma$ (2) $\Psi$ (3) $\square$ A(1) $\Gamma$ (3) $\Psi$ (4) $\Pi$	2)         222         m'm'm' Pn'm'a'         62.449           OK         3)         222         m'm'm' Pn'm'a'         62.449
		🛃 medical 👘 sarah12	4/20/2021 12:10 PM MATLAB Data	4 KB	✓ A(1) Γ(3) Ψ(4)	4) 2/m m'm'm Pnm'a' 62.447
		Screenshots Screenshots	5/9/2019 3:23 PM MATLAB Data	3 KB	$\square$ A(1) $\Gamma$ (3) $\Psi$ (5) $\square$ A(1) $\Gamma$ (4) $\Psi$ (6)	5) 2/m m'm'm Pnm'a' 62.447 6) mm2 mmm' Pn'ma 62.443
		Sent files	6/1/2021 11:35 AM MATLAB Data	3 KB	A(1) Γ(5) Ψ(7) PCB undefined	/ectors 7) 2/m m'm'm Dn'ma' 62.448
		Tax	6/2/2021 9:54 AM MATLAB Data	30 KB	$\square A(1) \Gamma(6) \Psi(9)$	8) mm2 mmm' Pnm'a 62.444 9) mm2 mmm' Pnm'a 62.444
		JaxReturn	7/8/2019 3:50 PM MATLAB Data	4 KB	$\Box A(1) \Gamma(7) \Psi(10)$	10) 2/m m'm'm Dn'm'a 62.446
		travel	9/24/2021 12:39 PM MATLAB Data	51 KB	Select PCR Edit	it Fie
		通 相机上传 1 sarah225	2/28/2020 11:04 AM MATLAB Data	54 KB	Select Basis Vectors Make	FST file Click on the basis vector label in the main window to move to its Point Group and
		<b>。</b> 银行卡			Select All Unselect All	Shubnikov Group in this list.
		<ul> <li>OneDrive - Oak Ri</li> </ul>			Option	The symmetry of a basis vector will be highlighted when it is selected
		This DC			Common Irreducible Representations	N/A indicates that the basis vector does not
					Γ(1) Γ(2) Γ(5) Select	have a valid Point or Shubnikov Group. C/B indicates a change of is required. See Ist2 file for
		A Network			Close Unselect All Close Close	explanation.
		File name: sarah62		→ MAT (*.MAT)		
MAT Ne: to be defined D/P file: to be defined Status: setup PIMC Cycle: 0 Criteria: 0 Current Chi ²⁴	"2.0 Stored Chi"2.0			Open - Cancel		
sarah62.pcr 🗵						
2 ! Data for PHASE number: 1 ==> Current R_Bra	ugg for Pattern# 1: 1.00			1		
3 I						
5 !					$\rightarrow$	
6 Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth	ATZ Nyk Npr More					
7 1 0 0 0.0 0.0 1.0 1 0 -2 0 0 8 1	0.00 0 0 0					
9 P -1 <space group="" symbol<="" td=""><td></td><td></td><td></td><td><pre>✓AIOM</pre></td><td>3 Between atom1 and 2 (0</td><td>r atom 3 and 4):</td></space>				<pre>✓AIOM</pre>	3 Between atom1 and 2 (0	r atom 3 and 4):
10 ! Naym Cen Laue Ireps N_Bas						,
12 ! Real(0)-Imaginary(1)_indicator for Ci				I		
Basic vectors					Component along a is EN	(related to C1):
14 ! 15 SYMM X, Y, Z						$\pi$ (related to CT),
16 BASR 2 0 0 0 0	² ATOM	1 1 (15721 25 04469)			Component along a is AE	$\mathbb{N}$ (rolated to C2).
17 BASI 0 0 0						$(1 \in [a] \in U \cup U \cup Z);$
19 BASR 2 0 0 0 0	ATOM	2: (.34279, .75, .54469)				
20 BASI 0 0 0 0 0	•			$\sim$		
22 BASR 2 0 0 0 0	2 ATOM	3: (.84279, .75, .95531)				
23 BASI 0 0 0 0	0	(			1	
24 SYMM X+1/2, -Y+1/2, -Z+1/2 25 BASR 2 0 0 0 0	NOTA 🔪 🔪	4: (.65721, .25, .45531)			r	
26 BASI 0 0 0 0 0	0	(				
27 !Atom Typ Mag Vek X Y Z Biso 28 ! C4 C5 C6 C7 C8 C9	A CI CZ C3		1000		O. Is the magnetic	c structure of
29 CR1 MCR3 1 0 .15721 .25000 .04469 .3000	00 1.00000 0.000 0.000 0.000					
30 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00					
32 0.00 0.00 0.00 0.00 0.00 0.00	0.00				CISDSe ₂ FIVI alor	id a axis of
33 !> Profile Parameters for Pattern # 1						.9
34 Scale Shapel Box Str1 Str2 35 10.0 0.0000 0.0000 0.0000 0.000	: Str3 Strain-Model				AFM along c ai	rs or canted
36 0.00000 0.00 0.00 0.00 0.00	0.00					is of carica
37 ! U V W X Y	GauSiz LorSiz Size-Model	<u> </u>				lor?
39 0.00 0.00 0.00 0.00 0.00	00 0.00 0.00					
40 ! a b c alpha b	eta gamma					
42 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000					
43 ! Pref1 Pref2 Asy1 Asy2 Asy3	Asy4		L()			H FLUX   SPALLATION
45 0.00 0.00 0.0000 0.00000 0.00000 0 45 0.00 0.00 0.00 0.00 0.00	0.00					NOPE NEUTRON
AG 0100					- INATIONAL Laboratory   REA	ACTOR   SOURCE

# Fix all the structural parameters and initialize nonzero C1 and C2 coefficients to the two basic vectors

## Fix all the parameters and only initialize nonzero C1 to the first basic vector only



Two reasons why the small AFM coefficient C2 should be zero:

1). The refinement quality is similar using small C2 or zero C2;

2). The nonzero AFM coefficient C2 produces pure magnetic peak (100). The POWGN data shows there is no detectable (100) intensity, indicating that C2 should be zero.



The fitting can be further improved by refining the scale factor, lattice parameters, profile parameters. Remember to constrain all of them to be the same for both nuclear and magnetic phases.

Bragg R-factor: 7.513

=> Normal end, final calculations and writing...

1.562 seconds

2

=> Magnetic R-factor: 9.653

5.997

RF-factor

=>

=>

=> Phase:

=> CPU Time:

=> 0.026 minutes

#### Modify PCR directly



#### Final refinement result:



20000 40000 60000 80000 100000120000140000160000180000220000220000 TOF (usec)



#### VIII. Display the magnetic structure using FpStudio or Vesta.

**FpStudio** Combined fst file FILE for FullProf Studio: generated automatically by FullProf 📖 🛄 🔞 🎆 🖓 🏭 💓 👶 👘 💹 🕺 🔘 2 !Title: CrSbSe3 nuclear phase Code File PG3_42704-2_10K Refine 3 SPACEG P n m a 4 CELL 9.150326 3.783540 13.331617 90.0000 90.0000 90.0000 DISPLAY MULTIPLE 5 BOX -0.15 1.15 -0.15 1.15 -0.15 1.15 6 ATOM Sb 0.02909 0.25000 0.65861 Sb 7 ATOM Cr Cr 0.15737 0.25000 0.04474 8 ATOM Se3 Se 0.17096 0.25000 0.48400 9 ATOM Se2 Se 0.28632 0.25000 0.21412 10 ATOM Sel Se 0.50108 0.25000 0.60829 12 { 13 LATTICE P 14 K 0.00000 0.00000 0.00000 15 SYMM x,y,z 16 MSYM u,v,w,0.0 17 MATOM CR1_1 Cr 0.15737 0.25000 0.04474 SCALE 1.0 GROUP

NU, dN4 J, 16 Jaffeel sand Proc your Unit			18         SRP         1         1           19         MATOM CR1_2         2         2           20         SRP         1         1           21         MATOM CR1_3         2         3	2.56154 Cr 2.56154 Cr 2.56154	0.00000 0.00000 0.34263 0.75000 0.00000 0.00000 0.84263 0.75000 0.00000 0.00000	0.00000 0.00000 0.54474 SCALE 1.0 GR( 0.00000 0.00000 0.95526 SCALE 1.0 GR( 0.00000 0.00000	0.00000 OUP 0.00000 OUP
I Cape Syldede No.	X 📲 Town Tybodio Nee	×		2.50154	0.00000 0.00000	0.000000 0.000000	0.00000
Construction Const	2 ¹ Statistical profile	v b p inschlassipCh	23 MATOM CRI_4	Cr	0.65/3/ 0.25000	0.45526 SCALE 1.0 GR	OUP
Normal         Normal         Normal           Image: Normal         Image: Normal         Image: Normal         Image: Normal           Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal           Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal           Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal         Image: Normal </td <td>Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se</td> <td></td> <td>24 SKP 1 1 25 }</td> <td>2.56154</td> <td></td> <td></td> <td></td>	Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se		24 SKP 1 1 25 }	2.56154			
Secondary		Comb	oine two fst f	iles			

-0-10

-

a 🖪 🕺 🛛 🗐 🗐 🔛 🐂 🎆 🇱 🕯

544 × •

0 00 0 00 0

000 000 0

• Sb



0.00000

0.00000

0.00000

0.00000

#### **CAK RIDGE** National Laboratory SPALLATION NEUTRON SOURCE

#### Vesta to open *.mcif file

PG3_42704-2_10K2.mcif - VESTA

	VESTA		- 0	$\times$
ie	Edit View Objects	<u>U</u> tilities <u>H</u> elp		
	<u>N</u> ew Structure New <u>W</u> indow	2	◆ ◆ ★ Step (*): 45.0 全 ↓ ↔ H H → Step (px): 10 + •	- ×
	Open	Ctrl+O		
	Open Recent	>		
	Save	Ctrl+S		
	Save <u>A</u> s	Ctrl+Shift+S		
	Export Data			
	Export Raster Image			
	Export Vector Image		VESTA	
	Save Output Jext			
	Close	Ctrl+W	isualization for Electronic and STructural A	nalys
-	<u>C</u> lose E <u>X</u> it Polyhedra	Ctrl+W Ctrl+Q C S V	isualization for Electronic and STructural A	nalys
	<u>Close</u> E <u>X</u> t Polyhedra	Ctrl+W Ctrl+Q C S V	Occ.         B         Site         Sym.           1         Cr         CRL         0.15721         0.25000         0.04469           1.00         1.000         1a         0.34279         0.75000         0.54469           1.000         1.000         1a         0.34279         0.75000         0.54469           1.000         1a         0.84279         0.75000         0.55531           1.000         1a         0.84279         1.075000         0.955531	nalys
	<u>C</u> lose E <u>X</u> # Polyhedra	Ctrl+W Ctrl+Q C S V	Occ.         B         Size         Sym.           1 Cr         CR1_1         0.15721         0.25000         0.04469           2 Cr         CR1_2         0.34279         0.75000         0.54469           3 Cr         CR1_3         0.64279         0.75000         0.54469           1.000         1.000         0.64279         0.75000         0.54469           1.000         1.000         1         0.65721         0.25000         0.45531           1.000         1.000         1         0.25000         0.45531         1.000         1.45531	nalys





One may modify all these tabs to improve the figure

Eile	Edit View Objects Utilities Help								
a	b c a* b* c* ⑦ t f ← → t	Step (*): 45.0      Step (*): 10 + - '□' Step (%): 10     PG3_42704-2_10K2.mcif							
	Structural models		Pleas	se re	m	ember to	report the magnetic	space gro	up:
+ 0 ,	Style Ball-and-stick Space-filling	Properties - PG2_4270+2_10K2.mcif X General Atoms Bonds Polyhedra Isosurfaces Sections Lini cell	MAGNE	TIC S	SPA	CE GROUPS	(THE BLACK AND WHITE	SHUBNIKOV (	GROUPS)
۰, م	O Polyhedral	Line Line style	BV#			Shubnikov	Group Group number		
	O Stick	O Do not show     Solid lines     Single unit cell     Datted lines     Line width:	1	IR#	1	Pnma	62.441		
~	Volumetric data	O All unit cells O Dashed lines	2	IR#	2	Pn'm'a'	62.449		
	Show sections Show isosurfaces		3	IR#	2	Pn'm'a'	62.449		
	Surface coloring		4	IR#	3	Pnm'a'	62.447		
	Smooth shading	Show compass	5	IR#	3	Pnm'a'	62.447		
	○ Wireframe	Show axis labels	6	IR#	4	Pn'ma	62,443		
	O Dot surface	Shapes	1 7	TR#	5	Pn'ma'	62 448		
	Crystal shapes	Material		TD#	ē	Dom's	62 444		
	Style	specular: 25 • 25 • 3minines (A): 100 •	l ä	TD#	ē	Dom's	62 444		
	Unicolor	Shapes	10	TD#	~	Do inia	62 446		
	O Custom color Wireframe		111	TD#	÷	Do inio	62.446		
	Durantia		12	TD#	6	Prima Domo !	62.446		
	Properties		1 **	IR#	٩.	Filma	62.445		
	Boundary Orientation								
		Preview							
		OK Cancel Save as Default	DA.		D	IDC	HIGH FLUX SP	ALLATION	
			<b>J</b> A	<b>N</b> .	ĩ,	IDG	ISOTOPE NI	EUTRON	
			Natio	nal	P	aborator	y   REACTOR   SO	DURCE	

POWGEN workshop "Getting the Most from Your POWGEN Data", June 15-17, 2023

FullProf tutorial on crystal structure and commensurate magnetic structure

Please contact me if you have any question or comments. Thanks!

zhangq6@ornl.gov

