

Choosing the right spectrometer

Garrett E. Granroth ARCS Instrument Scientist Neutron Scattering Division Neutron and Xray School 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Overview

- Introduction
- Energy Range
- Q Dependence
- DGS vs. TAS Flux considerations
- Polarization Considerations
- Resolution considerations
- Background considerations
- Summary

Introduction

- Spectroscopy is checking if energy is a gained or lost during the neutron's interaction with the sample.
- Spectrometers at ORNL
 - PTAX-HB1, TAS-HB3, CTAX, HB1A (mostly used for diffraction)
 - BASIS, CNCS, HYSPEC, NSE, VISION, ARCS, SEQUOIA
- How do I choose the best instrument for my science?
 - Instrument Scientists are here to help. Consult them at all stages of your experiment planning.
- This talk provides some general guiding principles to help choose a spectrometer; starting with the most straightforward and moving to more subtle.

What Energy scale?

- Coldest instruments for Diffusion
- Highest Energy instruments for Molecular vibrations
- Lattice and magnetic excitations cover lots of instruments
- A complimentary measurement can help guide instrument choice
 - Specific heat, magnetic susceptibility, NMR, etc.
- Instrument scientist guidance is helpful

Actional Laboratory

Will My data vary Quickly in Q?

• Yes

- Phonons, Magnons
- ARCS, SEQUOIA, CNCS, HYSPEC, HB1, HB3, CTAX
- No
 - Molecular vibrations, diffusion
 - Vision, Basis, NSE

Magnetic and Lattice excitations

- TAS instruments optimal to measure a small region in Q, ω space
 - HB1,HB3,CTAX
- DGS Instruments optimal to map Q, ω space
 - CNCS, HYSPEC, ARCS, SEQUOIA

CAK RIDGE National Laboratory

S. E. Hahn *et al.* Phys. Rev. B **89**, 014420 (2014)

A. D. Christianson, *et al.* Phys. Rev. Lett. **103**, 087002 (2008)

T [K]

3

6

E=5 meV

0.45

9 12 15

 $Q=(1/2 \ 1/2 \ \overline{1})$

E=5 meV

 $T_{c} = 11 \text{ K}$

T=1.6 K

T=20 K

0.50

(H H 1) [r.l.u]

 $(1/2 \ 1/2 \ 1)$

(3/2 3/2 1)

■ (1/2 1/2 1)

0.55

18

1.8

400

Count

0.60

Groups of instruments

- Energy range, Q resolution and mode allow you to narrow the choice to a few instruments
 - Broad mappings of lattice or magnetic excitations CNCS, Hyspec, ARCS, SEQUOIA
 - Diffusive motions CNCS, BASIS, NSE
 - Localized study of lattice or magnetic excitations HB1, HB3, CTAX
 - Molecular vibrations Vision, SEQUOIA, ARCS
- Talking with the Instrument Scientists on one of these instruments is the best way to move forward

More than one instrument may be required

- Study of fractal diffusion in polymer fuel cell
- Many time scales
- Required 3 instruments
 - CNCS (\triangle)
 - BASIS (O)
 - Spheres (X) (MLZ)
- Usually start with coarsest resolution

Hopfenmüller et al. J. Chem. Phys. 148, 204906 (2018).

Does the Beam Need to be polarized?

- Separating Magnetic and Lattice Modes
- Identifying type of spin excitation (Transverse vs. Longitudinal)
- Used for timing in Spin Echo
- Things to think about.
 - Flux on sample is < 50% of unpolarized flux
 - Polarized beams are limited to cold (HYSPEC and NSE) and Thermal (HB1 and Hyspec beams)
 - Usually a complimentary, unpolarized measurement should be done first.
- Polarized instruments HB1, HYSPEC, NSE

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE B. Lake, D. A. Tennant, S. E Nagler, Phys. Rev. B **71**, 134412 (2005)

Resolution

- Finest resolution instruments are at spallation source
- Finest resolution is often not the best configuration
 - It comes with longer counting times or reduced Q, ω space coverage
- A TAS provides tunable resolution with
 - Collimation, focusing and Wollaston Prism options,
 - Change orientation with W vs. anti W configuration
- DGS instruments
 - Chopper speed and slit choice is used to tune resolution
 - Resolution orientation is fixed.
- Resolution choices are subtle (talk to the instrument staff)

TAS Resolution Example

- Chain coupling in KCuF₃
- At small I

CAK RIDGE

National Laboratory REACTOR

- Anti- W configuration cuts the excitation in a focusing condition
- W configuration does not
- Performed on TAS at HFBR

SPALLATION NEUTRON

D. A. Tennant, et al. Phys. Rev. B 52, 13381 (1995)

DGS Resolution example

- Zone Boundary Modes in Sr₂CuO₂Cl₂
- Resolution of SEQUOIA allowed fine measurement at zone boundary
- Energy Range and Flux Unique to SEQUOIA

K. Plumb et al. Phys. Rev. B 89, 180410(R) (2014)

Background Considerations

- For triple axis spectrometers
 - Background tends to be flat , but larger than DGS instruments
 - Spurions are straightforward to calculate and identify
- For TOF instruments
 - Background tends to be low but structured
 - Sometimes structured background is hard to distinguish from signal.

Direct Geometry Spectroscopy

ARCS

Doug Abernathy

Garrett Granroth

Matt Stone

Sasha Kolesnikov

Software

CNCS

Daniel Pajerowski

Andrey Podlesnyak

HYSPEC

Barry Winn

Andrei Savici

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

14

Triple Axis Spectroscopy

HB3

Songxue Chi

CTAX

Tao Hong

15

Travis Williams HB1A

Wei Tian

HB1

Masa Matsuda

Adam

Aczel

Jaime Fernandez-Baca

Wollaston Prisms

Fankang Li

Indirect Spectroscopy and NSE

Vision

Luke Daemen BASIS

Niina Jalarvo Naresh Osti

NSE

Laura Stingaciu

Piotr Zolnierczuk

Software

Yongqiang (YQ) Chen

16

Actional Laboratory REACTOR SOURCE

17

Summary

DAK RIDGE | HIGH FLUX National Laboratory | REACTOR

- Energy scale and Q dependence can narrow down what spectrometer to use
- Polarization, Resolution, and background considerations are tricky
- Ask Instrument staff for help
- Please provide your thoughts on this presentation at the survey accessed by the QR code.

