IMAGING

Neutron Imaging Facility

CG-1D

The CG-1D neutron imaging facility provides a polychromatic beam of cold neutrons (peak wavelength 2.6 Å) to perform radiography and computed tomography. The facility provides a range of position-motorized apertures that can provide a collimation ratio L/D ranging from 400 to 2000 (where L is the distance from the aperture of diameter, D, and where the radiograph is formed). The sample area is equipped with a translation and multiple rotation stages, capable of performing automated tomography scans on two separate samples for each hands-on setup. This capability is enabled with the data acquisition system EPICS. Furthermore, the beamline is equipped with two main detector systems: a charge-couple device (CCD) and a scientific complementary metal-oxide semiconductor (sCMOS) system. While the CCD is optimized for static measurements and slow kinetic changes, the sCMOS detector offers milli- and micro-second (for cycling motion), respectively, time resolution.

Spatial resolution available at the beamline is 25–30 µm with the sCMOS, 75–100 µm with the CCD. A micro-channel-plate (MCP) Timepix3 detector is currently under development.

SPECIFICATIONS	
Wavelength range (Å)	0.8 < \(\lambda < 6 \)
L (m)	6.59
D (mm)	3.3, 4.1, 8.2, 11, 16
Wavelength resolution at 2.53 Å (with monochro- mator)	Δ λ/ λ ~ 0.5 %
Highest spatial resolution	CCD \sim 75 µm (FOV \sim 8.6 x 8.6 cm ²), sCMOS \sim 25 µm (FOV \sim 3.6 x 2.4 cm ²)
Detectors	CCD, and sCMOS; coupled with scintillators (various thickness from 25 to 200 µm)

21-G02334/jdh Dec 2021

APPLICATIONS

Energy Storage

 Ion transport in energy storage materials; three-dimensional mapping of ions in electrodes

Nuclear Materials

 Molten salt diffusion at high temperatures, inhomogeneities in nuclear fuel material

Transportation Technologies

 Particulate deposition in vehicle parts; two-phase transport in heat pipes; multi-phase constrained jet flows; metal casting

Plant-Soil-Groundwater Systems

 Transport and interactions of fluids in porous media, water infiltration and aquifer recharge, plant-plant and plant-fungal interactions, change in pore structure and voids after repeated thawing and freezing of permafrost soil

Biological and Forensic Studies

 Structural, contrast agent, and cancer research; wood and biomass pyrolysis

Food Science and Archeology

 Water migration and degradation through time; examination of cultural artifacts

Detector housing for the CCD camera lens, mirror, and scintillator.

For more information, contact

Yuxuan Zhang, zhangy6@ornl.gov, 865.341.0139 Hassina Bilheux, bilheuxhn@ornl.gov, 865.384.9630

neutrons.ornl.gov/imaging

