Resonant and Non-resonant Inelastic X-ray Scattering (IXS)

Young-June Kim

University of Toronto

youngjune.kim@utoronto.ca

History of IXS

- In which year was the first inelastic X-ray scattering experiment carried out and reported?
 - 1. 1895
 - 2. 1923
 - 3. 1970
 - 4. 1995

THE

PHYSICAL REVIEW

A QUANTUM THEORY OF THE SCATTERING OF X-RAYS BY LIGHT ELEMENTS

BY ARTHUR H. COMPTON

Abstract

A quantum theory of the scattering of X-rays and γ -rays by light elements. —The hypothesis is suggested that when an X-ray quantum is scattered it spends all of its energy and momentum upon some particular electron. This electron in turn scatters the ray in some definite direction. The change in momentum of the X-ray quantum due to the change in its direction of propagation results in a recoil of the scattering electron. The energy in the scattered quantum is thus less than the energy in the primary quantum by the kinetic energy of recoil of the scattering electron. The corresponding *increase in the* wave-length of the scattered beam is $\lambda_{\theta} - \lambda_0 = (2h/mc) \sin^2 \frac{1}{2}\theta = 0.0484 \sin^2 \frac{1}{2}\theta$, where h is the Planck constant, m is the mass of the scattering electron, c is the velocity of light, and θ is the angle between the incident and the scattered ray. Hence the increase is independent of the wave-length. The distribution of the scattered radiation is found, by an indirect and not quite rigid method, to be concentrated in the forward direction according to a definite law (Eq. 27). the secondary. The zero point for the spectrum of both the primary and secondary X-rays was determined by finding the position of the first order lines on both sides of the zero point.

Fig. 4. Spectrum of molybdenum X-rays scattered by graphite, compared with the spectrum of the primary X-rays, showing an increase in wave-length on scattering.

It will be seen that the wave-length of the scattered rays is unquestionably greater than that of the primary rays which excite them

Inelastic X-ray Scattering

- X-ray spectroscopy usually involves absorption/emission
 XAS, XES, XMCD, etc.
- IXS (Scattering) is Photon-in, photon-out
- Interaction Hamiltonian between photon and electron (following Blume 1985)

 $\mathbf{A}(\boldsymbol{r})$ is linear in photon creation and annihilation operators

Inelastic X-ray Scattering

Inelastic X-ray Scattering

• Partial differential cross-section (measured)

$$S(\mathbf{Q}, \omega) = \frac{1}{2\pi\hbar} \int G(\mathbf{r}, t) e^{i(\mathbf{Q} \cdot \mathbf{r} - \omega t)} d\mathbf{r} dt$$
Two-particle correlation function

e.g.

Density correlation fn $\langle n(\mathbf{r}, t)n(0,0) \rangle$ Spin-spin correlation fn $\langle S(\mathbf{r}, t)S(0,0) \rangle$

Resonant scattering – quantum mechanical picture

$$W = \frac{2\pi}{\hbar} \left| \langle f | \mathcal{H}_{I} | i \rangle + \sum_{n=1}^{\infty} \frac{\langle f | \mathcal{H}_{I} | n \rangle \langle n | \mathcal{H}_{I} | i \rangle}{\omega_{i} - E_{n} - i\Gamma_{n}} \right|^{2} \rho(E_{F})$$

$$\mathcal{H}_{I} \sim \mathbf{A} \cdot \mathbf{p} \sim \boldsymbol{\varepsilon} \cdot \mathbf{p} \ e^{i\mathbf{k} \cdot \mathbf{r}}$$

$$\text{Dipole Approximation}$$

$$\langle n | \mathbf{p} | i \rangle \sim \langle n | \mathbf{r} | i \rangle$$

$$\langle n | \widehat{\mathcal{D}} | i \rangle$$

$$(c) \text{ Resonant scattering}$$

$$|n\rangle = \frac{|n\rangle}{k}$$

$$(c) \text{ Resonant scattering}$$

$$|n\rangle = \frac{|n\rangle}{k}$$

$$(c) \text{ Resonant scattering}$$

Elements of Modern X-ray Physics, Als-Nielsen and McMorrow, Wiley 2011

Many flavors of IXS

$$H_{e-\gamma} \propto A^2 + A \bullet p$$

Non-resonant IXS (NIXS)

High-resolution IXS

1 meV resolution phonons + vibrational modes ~ inelastic neutron scattering

Medium-resolution NIXS

200-1000 meV resolution Collective electronic excitations ~EELS

Resonant IXS (RIXS)

Core-electrons RIXS=RXES

Typically 1 eV resolutions Started with soft x-ray XAS, XPS, XES, etc.

Core spectroscopy IXS

Typically 1 eV resolution X-ray Raman e.g. low Z material in high pressure

Valence electrons RIXS

100-400 meV Charge, orbital, magnetic.. IR, Raman, EELS

Instrumentation – brute force

- Technically challenging to obtain meV resolution with 10 keV x-ray
- Equivalent to measuring the length of a football field with the accuracy of 0.1mm

A.Q.R. Baron, et al, J. Phys & Chem Solids 61, (2000) 461.

How to get ppm accuracy?

• Start with narrow bandwidth

Bragg's law revisited – Dynamic diffraction Theory

- Only works for perfect crystals
- Finite width of Bragg peaks Darwin width (1914)

Darwin width

F. Sette et al. Phys. Rev. Lett. 75, 850 (1995)

G. H. Lander and V. J. Emery, Nucl. Instrum. Methods Phys. Res. Sect. B 12, 525 (1985)

Energy

Transfer

Phonon dispersion

 δ -Pu-Ga, Wong et al. Science 2003

Non-resonant IXS (NIXS)

B. Larson et al. PRL 99, 026401 (2007)

M. Haverkort et al. PRL 99, 257401 (2007)

X-ray Raman Scattering

- Misleading/confusing name
- But these days it means

W. L. Mao et al. Science 314, 636 (2006)

Why RIXS?

- Electronic excitations are weak
 - E.g. La_2CuO_4 has total (2X57+29+4X16=) 207 electrons per f.u. But only one of these (3d(x²-y²)) do anything interesting.
- Resonance can enhance intensity by a lot
- But we still want to measure $S(Q,\omega)$
- (Big) question

$$\left|\sum_{n=1}^{\infty} \frac{\langle f | \widehat{\mathcal{D}}^{\dagger} | n \rangle \langle n | \widehat{\mathcal{D}} | i \rangle}{\omega_{i} - E_{n} - i\Gamma_{n}}\right|^{2} \gtrsim S(\boldsymbol{Q}, \omega)$$

- Reviews
 - Kotani and Shin RMP 2001
 - Ament et al. RMP 2011

Kramers-Heisenberg formula

How to calculate RIXS spectrum?

- Exact diagonalization
- Ultrashort Core-hole Lifetime approximation
 - Perturbation expansion of the KH formula
 - van den Brink and van Veenendaal (2005,2006)
 - Correlation functions can be factorized in the case of indirect RIXS

Ament et al. RMP 83, 705 (2011)

Overview (incomplete)

1 H 1.00794			_														2 He 4.002602
3 Li 6.941	4 Be 9.012182			Soft	На	rd	Tend	der	Liga	and		5 B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg ^{24.3050}											13 Al 26.581538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar ^{39.948}
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 CO 58.933200	28 Ni 58.6534	29 Cu 63.545	30 Zn ^{65.39}	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se _{78.96}	35 Br 79.504	36 Kr 83.80
37 Rb 85.4678	38 Sr ^{87.62}	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo ^{95.94}	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 196.56655	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 126.90447	54 Xe 131.29
55 CS 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf ^{178.49}	73 Ta 180.94.79	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.58038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	112		114 (289) (287)		(289)		118 (293)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	HO	Er	Tm	Yb	Lu
140.116	140,50765	144.24	(145)	150.36	151.964	157.25	158.92534	162,50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0381	231.035888	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

RIXS Instrumentation

Beamline 27-ID (MERIX) at APS

Two types of RIXS

- Core-level RIXS useful for studying electronic structure → RXES
- Valence RIXS collective excitations (momentum dependence)

Ament et al. Reviews of Modern Physics 2011

HERFD (High Energy Resolution Fluorescence Detection)

arXiv:1805.03612

RXES – Very useful for studying complex oxides

K. Dai, W. Yang, et al. Joule, 2019, 3, 518–541 See also J. Wu et al. Dalton Trans., 2020, 49, 13519-13527

Magnons

Ament et al. Reviews of Modern Physics 2011

First, Bimagnon

PRL 100, 097001 (2008)

PHYSICAL REVIEW LETTERS

week ending 7 MARCH 2008

Observation of a 500 meV Collective Mode in La_{2-x}Sr_xCuO₄ and Nd₂CuO₄ Using Resonant Inelastic X-Ray Scattering

J. P. Hill,^{1,2} G. Blumberg,³ Young-June Kim,⁴ D. S. Ellis,⁴ S. Wakimoto,⁴ R. J. Birgeneau,⁴ Seiki Komiya,⁵ Yoichi Ando,^{5,*} B. Liang,⁶ R. L. Greene,⁶ D. Casa,⁷ and T. Gog⁷

PRL 102, 167401 (2009)

week ending 24 APRIL 2009

Dispersion of Magnetic Excitations in the Cuprate La₂CuO₄ and CaCuO₂ Compounds Measured Using Resonant X-Ray Scattering

L. Braicovich,¹ L. J. P. Ament,² V. Bisogni,³ F. Forte,^{2,4} C. Aruta,⁵ G. Balestrino,⁶ N. B. Brookes,³ G. M. De Luca,⁵ P.G. Medaglia,⁶ F. Miletto Granozio,⁵ M. Radovic,⁵ M. Salluzzo,⁵ J. van den Brink,^{2,7} and G. Ghiringhelli¹

PHYSICAL REVIEW LETTERS PRL 104, 077002 (2010)

Magnetic Excitations and Phase Separation in the Underdoped La_{2-x}Sr_xCuO₄ Superconductor Measured by Resonant Inelastic X-Ray Scattering

L. Braicovich,¹ J. van den Brink,^{2,3,4} V. Bisogni,⁵ M. Moretti Sala,¹ L. J. P. Ament,^{2,3} N. B. Brookes,⁵ G. M. De Luca,⁶ M. Salluzzo,⁶ T. Schmitt,⁷ V. N. Strocov,⁷ and G. Ghiringhelli¹

Sr₂IrO₄ – magnons with hard RIXS

Jungho Kim et al. PRL 108, 177003 (2012)

INS/RIXS Comparison - magnons

Beyond magnon – spinon

Y. Shen et al. PRL 129, 207201 (2022)

J. Schlappa et al. Nat. Comm. 9, 1 (2018)

Probing particles for elementary excitations

Probes	Light	X-ray	Neutron	Electron
Wavelength	500nm	~1 Å	~1 Å	0.01~0.1 Å
Q(2π/λ)	~10 ⁻³ Å ⁻¹	~6 Å-1	~6 Å-1	~60 Å-1
Interaction	Relatively weak	Weak	Very weak	Strong
Primary Interaction	Charge	Charge	Spin Nucleus	Charge
Probing depth	Medium (~µm)	Medium (~µm)	Long (~cm)	Short (~nm)
Multiple scattering	Y	Ν	Ν	Y
Particle Energy	1~2 eV	~10 keV	~30 meV	1~100 keV
Energy resolution	Very good	OK (IXS) Limited (RIXS)	Very good	OK (EELS)
Beam size	Small (limited by wavelength)	Very small (down to nm)	Big = Requires large sample	Ultra small

Ament et al. Reviews of Modern Physics 2011

Momentum dependence

Gretarsson et al. PRL 2013

Special Case: spin chain

Nature 482, 82 (2012)

Spin–orbital separation in the quasi–one–dimensional Mott insulator Sr₂CuO₃

J. Schlappa^{1,2}, K. Wohlfeld³, K. J. Zhou¹[†], M. Mourigal⁴, M. W. Haverkort⁵, V. N. Strocov¹, L. Hozoi³, C. Monney¹, S. Nishimoto³, S. Singh⁶[†], A. Revcolevschi⁶, J.-S. Caux⁷, L. Patthey^{1,8}, H. M. Rønnow⁴, J. van den Brink³ & T. Schmitt¹

Special Case II: Strong SOC

Sr₂IrO₄

Jungho Kim et al. Nature Communications, 2014

Resonant phonon

Vale et al. Phys. Rev. B 100, 224303 (2019)

Ghiringhelli et al. Science 337, 821 (2012)

M. Mittrano et al. Science Advances 2019

Future RIXS

Jungho Kim, et al., Sci. Rep. 8, 1958 (2018); Thomas Gog et al. JSR 25, 1030 (2018)

Energy loss (meV)

Summary

- Inelastic X-ray Scattering
 - Workhorse for measuring phonon dispersion relation and other lattice dynamics
 - Useful for studying electronic excitations
 - Crystal field excitations (dd excitations sensitive to orbital symmetry)
 - X-ray Raman Scattering allows XAS in extreme sample enviroments
- Resonant Inelastic X-ray Scattering
 - RIXS map (RXES) useful for chemical analysis
 - Magnetic Excitations
 - An exciting time for RIXS
- Many materials beyond cuprates are being investigated using RIXS, headed by iridates

NXS Lecture - Young-June Kim: "Inelastic X-ray Scattering"

https://forms.office.com/g/3JMPrwhuYf