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Outline
• Imaging at the High Flux Isotope Reactor MARS beamline:

– Principle of neutron radiography and computed tomography at a 

continuous source
– The CG-1D imaging beamline
– Examples

• Imaging at the Spallation Neutron Source:
– Principle of neutron radiography at a pulsed source

– Examples
– The  VENUS !!!construction project

• Scientific programming
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Neutron imaging measures the transmitted neutrons 
though an object

Source Object Detector

(Figure source: aven.amritalearning.com,. (2013). Shadows and Pin Hole Camera.) 
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Transmitted neutrons recorded as image/images

I0

Incident

I

Transmitted I(x, y)

Volume
reconstruction

Continuous neutron beam

I(x, y, θ)

θ
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Neutrons interact uniquely with matter

A. Tengattini, et al. Geomechanics for Energy and the Environment 27 (2021)

• Non-destructive

• High penetration through metals

• Sensitive to light elements (H, Li, etc.)

• Isotopic contrast

(Zhang Y. The University of Utah; 2016)
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Neutrons interact uniquely with matter (cont’d)

Neutron

X-ray

IPTS-33592, Y. Zhang, 2024

Gupta, D., Zhang, Y., Nie, Z., & Koenig, G. M. (2024). 

Journal of Industrial and Engineering Chemistry
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Neutrons interact uniquely with matter (cont’d)

Neutron

H2OD2O

IPTS-26032, Y. Zhang, 2022

https://neuit.ornl.gov/

6Li

7Li

H

D
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The MARS instrument at HFIR

Detectors

Flight tube (He filled)

Sample table

Beam stop
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Example: visualize live root system

Al chamber

(J. Warren (PI), H, Bilheux, M. Kang, S. Voisin, C. Cheng, J. Horita, E. Perfect, Plant Soil, 2013)

Switchgrass Maize
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Resolve the composition gradient in graded superalloy

Huang S., Shen C., An K., Zhang Y., Spinelli I., Brennan M., Yu D., Frontiers in 

Metals and Alloys, 1, 1070562 (2022)

IN718

René41

Transmission image

Reconstructed 3D volume
(virtual slicing location in orange) 

Cross-sectional view after 
virtually slicing
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Measures molten salt densities at MSR operating 
temperatures

Moon J., Andrews H.B., Agca C., Bilheux J., Braatz A.D., McAlister A., McFarlane J., McMurray J.W., Robb K.R., Zhang Y., Industrial & 

Engineering Chemistry Research, 61, 17665-17673 (2022)
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Resolutions and FOVs

Type of 
detector

Field-of-view (FOV) Pixel size (μm)
Highest spatial 
resolution (μm)

Typical acquisition time 

of 1 radiograph
Maximum speed @16 bit

High-res (1x) 36 x 24 mm2 3.8 10-15 900 s 1 image/second

High-res (.5x) 50 x 48 mm2 7.63 20-25 300 s 1 image/second

High-speed 88 x 88 mm2 43 ~100 — 74 image/second

Balanced 88 x 88 mm2 16 ~50 30-90 s 1 image/second

Gap between 
lines = 100 μm

Gap between 
lines = 20 μm

High-res (.5x)High-speed High-res (.5x)High-speed

IPTS-27734, Y. Zhang, 2022

(Sample credit: George Williams)

IPTS-27734, Y. Zhang, 2022
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Resolutions and FOVs

Type of 
detector

Field-of-view (FOV) Pixel size (μm)
Highest spatial 
resolution (μm)

Typical acquisition time 

of 1 radiograph
Maximum speed @16 bit

High-res (1x) 36 x 24 mm2 3.8 10-15 900 s 1 image/second

High-res (.5x) 50 x 48 mm2 7.63 20-25 300 s 1 image/second

High-speed 88 x 88 mm2 43 ~100 — 74 image/second

Balanced 88 x 88 mm2 16 ~50 30-90 s 1 image/second

Gap between 
lines = 100 μm

Gap between 
lines = 20 μm

High-res (.5x)High-speed High-res (.5x)High-speed

IPTS-27734, Y. Zhang, 2022

(Sample credit: George Williams)

IPTS-27734, Y. Zhang, 2022

Transmission mode
resolves micro features (10-100 μm) 

in cm sized samples ✓ 

Go down to smaller length scale ?
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What is neutron grating interferometry (nGI)?
A neutron imaging instrumentation that enable 
the utilization the wave properties of neutron, to 
spatially resolve sub μm internal features

Source 
grating

Phase grating
p = 10-50 μm

Analyzer 
grating

Interference 
patternSample 

(cm size)

Y. Kim et al., Applied Sciences (2022).

p

Ls

Raw data resulted from 
a step-wise scan

T. Reimann et al., J. Applied 
Crystallography. (2016)

Transmission Image (TI)

(Sample courtesy of Dr. Chris Fancher)
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What is neutron grating interferometry (nGI)?
A neutron imaging instrumentation that enable 
the utilization the wave properties of neutron, to 
spatially resolve sub μm internal features

Source 
grating

Phase grating
p = 10-50 μm

Analyzer 
grating

Interference 
patternSample 

(cm size)

Y. Kim et al., Applied Sciences (2022).

p

Ls

Raw data resulted from 
a step-wise scan Dark Field Image (DFI)

T. Reimann et al., J. Applied 
Crystallography. (2016)

(Sample courtesy of Dr. Chris Fancher)
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More about this sample along with the nGI results

EBSD image is from Plotkowski et al., Additive Manufacturing. 46, 102092, (2021).

Transmission (TI) Dark Field (DFI)Photo EBSD

Inconel

Two different 

cooling rate regions 
in an Inconel 

sample

(Sample courtesy of Dr. Chris Fancher)
Color relates to the 
SANS from features 
in certain sizes
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More about this sample along with the nGI results

EBSD image is from Plotkowski et al., Additive Manufacturing. 46, 102092, (2021).

Transmission (TI) Dark Field (DFI)Photo EBSD

Inconel

Two different 

cooling rate regions 
in an Inconel 

sample

(Sample courtesy of Dr. Chris Fancher)
Color relates to the 
SANS from features 
in certain sizes

How to interpretate the DFI?
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Scan through various correlation lengths to understand 
the length scale 

Source 
grating

Phase grating
p = 10-50 μm

Analyzer 
grating

Interference 
patternSample 

(cm size)

Y. Kim et al., Applied Sciences (2022).

p

Ls

(Sample courtesy of Dr. Chris Fancher)

𝜉 = 𝜆𝐿𝑠/𝑝

Autocorrelation length
Neutron 
Wavelength
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Scan through various correlation lengths to understand 
the length scale 

Source 
grating

Phase grating
p = 10-50 μm

Analyzer 
grating

Interference 
patternSample 

(cm size)

Y. Kim et al., Applied Sciences (2022).

p

Ls

(Sample courtesy of Dr. Chris Fancher)

𝜉 = 𝜆𝐿𝑠/𝑝

Correlation length Neutron 
Wavelength

ξ = 223 nm ξ = 313 nm ξ = 401 nm ξ = 491 nm

ξ = 580 nm ξ = 670 nm ξ = 759 nm ξ = 848 nm
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Plotting the dark field intensity vs. ξ in region-of-interest 
(ROI)

• Indicating different microstructures between 
selected ROIs

DFI

(Sample courtesy of Dr. Chris Fancher)
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Measurement of suspended PMMA spheres in solution as 
a calibration standard

0

0.2

0.4

0.6

0.8

1
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D
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fie
ld
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ity

Autocorrelation length (nm)
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• The curves indicate the size of the PMMA spheres,which 
match well with the spec. (~100 nm in the top cell, ~150 
nm in the bottom cell)

• Some settling observed in the bottom cell, resulted 
difference in number density of PMMA can be observed

TI DFI

(Sample courtesy of Dr. Fankang Li)
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nGI capability at MARS

Two setups to cover ACL ranges from ~40 nm to ~3400 nm

Dark fieldTransmission

(Sample courtesy of R. Dehoff) 
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Outline
• Imaging at the High Flux Isotope Reactor MARS beamline:

– Principle of neutron radiography and computed tomography at a 

continuous source
– The CG-1D imaging beamline
– Examples

• Imaging at the Spallation Neutron Source:
– Principle of neutron radiography at a pulsed source

– Examples
– The  VENUS !!!construction project

• Scientific programming
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Imaging at a pulsed source (SNS)

I0

Incident

I

Transmitted

Neutron pulse

I(x, y, t)

Proton 
pulse

Energy-dependent 
radiographsDetector

I(x, y, 𝜆)
or

I(x, y, E)

Hg 
Target

Moderator

T0 T
L

Courtesy of Y. Zhang, ORNL
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Higher energy neutrons can also be used for imaging (neutrons of energies 
higher than 1 eV): Resonance Imaging

Zhang Y., Myhre K.G., Bilheux H.Z., Tremsin A.S., Johnson J.A., Bilheux J., Miskowiec 

A., Hunt R.D., Santodonato L., Molaison J.J., "Neutron Resonance Radiography 

and Application to Nuclear Fuel Materials", Transactions of the American Nuclear 

Society, (2018).

http://answinter.org/wp-content/2018/data/pdfs/287-26287.pdf
http://answinter.org/wp-content/2018/data/pdfs/287-26287.pdf
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Resonance imaging (> 1eV or < 0.286 Å): preparing 
your experiment

• Soil surveys, contaminants in soil, etc.:
– transmission through 0.01 mm thickness of natCo (between 1 and 5 Å) = 99.5 %

– transmission through 1 mm thickness of natZn (between 1 and 5 Å) = 96.4 %

Simulated resonance for elements of interest(*)

(*)Soil surveys in UK (1978-1983, 2000, 2011-2012)

neutrons Overall 
thickness 
through beam

100 eV = 0.0286 Å
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• Hg contamination in soil

– Assumptions: 0.1 mm Hg (13.6 g/cm3) + 12.5 mm SiC (with 1.5 g/cm3)

• Transmission (1 and 5 Å) = 66.4 % 

Resonance peaks plotted 
with: 

iNEUIT (“I knew it”)

Resonance imaging: preparing your experiment (cont’d)
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Using epithermal neutrons (energy > 1 eV), resonance 
imaging can map the isotopic content in advanced 
nuclear fuel materials in 3D

➢Distribution of elements drive the performance of the novel advanced 
nuclear fuel materials

U

➢ Quantitative analysis is being developed using in-house open-source 
Python package (ResoFit)

Gd

U

Gd

Myhre K.G., Zhang Y., Bilheux H.Z., Johnson J.A., Bilheux J., Miskowiec A., Hunt R.D., 

"Nondestructive Tomographic Mapping of Uranium and Gadolinium Using Energy-Resolved 
Neutron Imaging", Transactions of the American Nuclear Society, (2018).

http://answinter.org/wp-content/2018/data/pdfs/264-26727.pdf
http://answinter.org/wp-content/2018/data/pdfs/264-26727.pdf
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Neutron Wavelength

The position of the Bragg 

edge, λhkl = 2 dhkl, is a measure 

of the strain in the sample

The height of Bragg edge 

provides the amount of a 

specific phase.

λhkl 

Different Bragg edges 

measure different phases 

and lattice spacings, dhkl.

Bragg edge imaging: how does it work?
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1 cm

Radiograph 
at HFIR

3D printed 
Inconel 718

Barton J.P., Bilheux H.Z., Bossi R., 

Herwig K.W., Santodonato L., 

Taylor M., "Chapter 12: Neutron 

Radiography for Nondestructive 

Testing", Nondestructive Testing 

Handbook, Fourth Edition: Volume 

3, Radiographic Testing 

(RT) (2019).

https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca
https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca
https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca
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Principle of Bragg edge Transmission

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

20

40

60

80

100

B
a

rn
s

Wavelength (Å)

 Total Cross Section

 Coherent Elastic

 Incoherent Elastic

 Coherent Inelastic

 Incoherent Inelastic

 Absoption

311 220222 200 111

1.5 2.0 2.5 3.0 3.5 4.0 4.5

40

60

80

100


to

t 
(B

a
rn

s
)

Wavelength (Å)

 1 m

 5 m

 10 m

311 220222 200 111

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

100

200

300

() r= =

() r= =

() r= =


to

t 
(B

a
rn

s
)

Wavelength (Å)

 No texture

r = 1 for all (hkl)

311 220222 200 111

() r= =

Total cross section for 
Inconel 718

Crystallite size effect
(Ehkl)

Crystallite orientation 

effect (𝑷 ൯𝜶
𝒉

(𝝀 : r and β)

✓ Utilizes thermal and cold neutrons (approximately between 1 and 10 Å)
✓ Obeys Bragg’s Law λhkl = 2dhkl sin θhkl simplifies:  λhkl = 2dhkl

d111

𝜎𝐵𝑟𝑎𝑔𝑔 𝜆 =
𝜆2

2𝑉0


ℎ𝑘𝑙

2𝑑ℎ𝑘𝑙>𝜆

𝐹ℎ𝑘𝑙
2𝑑ℎ𝑘𝑙  𝑃 ൯𝛼ℎ(𝜆  𝐸ℎ𝑘𝑙 𝜆, 𝐹ℎ𝑘𝑙

March-Dollase 
model

Sabine’s primary 
extinction model 𝑉0: volume of unit cell

Fhkl: Structure factor including Debye-
Waller factor

G. Song et al., Journal of Imaging, 3, 65 (2017).
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The perfect case study: powders

Song G., Lin J.Y., Bilheux J., Xie Q., Santodonato L., Molaison J.J., Skorpenske H.D., dos Santos A.M., Tulk C.A., An K., Stoica A.D., Kirka M.M., Dehoff 

R.R., Tremsin A.S., Bunn J.R., Sochalski-Kolbus L.M., Bilheux H.Z., "Characterization of Crystallographic Structures Using Bragg-Edge Neutron 

Imaging at the Spallation Neutron Source", Journal of Imaging, 3, 4, 65 (2017).

(200)

http://dx.doi.org/10.3390/jimaging3040065
http://dx.doi.org/10.3390/jimaging3040065


3535

M
ic

ro
stra

in

Materials Behavior: Monitoring residual strain relaxation and preferred grain orientation of 
additively manufactured Inconel 625 by in-situ neutron imaging
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Engineered Materials: Monitoring residual strain relaxation and 
preferred grain orientation of additively manufactured Inconel 
625 by in-situ neutron imaging (10 min measurements)

AM Inconel 625 strain evolution as a function of 
temperature

Tremsin et al, Additive Manufacturing, 2021.

Modeled and experimental results.

Tremsin et al, Nuc. Instr. Methods in Phys. Res. A, 2021.
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Stop

C

ontin
ue

Autonomous 
Decision

Autonomous Hyperspectral 
Neutron CT Experiment 
at ORNL

Goniometers

DetectorSample

4.21.5

Up to factor 5 improvement in time
Optimization of the scan based on the unique 
sample geometry
Ability to provide real-time reconstructed data 
using advanced iterative reconstruction 
methods

Sample Adaptive 
Scanning Angles 

(active learning)

AI Quality 

Evaluation

Light scan and 
preselection of 

projection angles
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<311> Bragg edge reconstruction at ~ 2.17 Å ± 0.2 Å

Thresholds

MSE1 5.689x 10-3

SSIM2 0.634

1Zhou Wang; Bovik, A.C.; ,”Mean squared 
error: Love it or leave it? A new look at 
Signal Fidelity Measures,” Signal 
Processing Magazine, IEEE, vol. 26, no. 1, 
pp. 98-117, Jan. 2009.
1Z. Wang, A. C. Bovik, H. R. Sheikh and E. 
P. Simoncelli, “Image quality assessment: 
From error visibility to structural similarity,” 
IEEE Transactions on Image Processing, 
vol. 13, no. 4, pp. 600-612, Apr. 2004.

Final result

FBP – 15 
projections

FBP – 27 
projections

svMBIR– 15 
projections

sVMBIR– 27 
projections

Ni

Cu

Conventional reconstruction methods Our advanced algorithms/methods
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Neutron Imaging Capabilities at VENUS

• Bragg edge imaging

• Resonance imaging

• Epithermal imaging

• Largest field-of-view thermal/cold imaging

• Neutron grating interferometry (to be implemented)

• Polarized imaging (to be implemented)

https://neutrons.ornl.gov/venus
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Bragg edge imaging: 

20 x 20 cm2, spatial resolution ~ 100 

µm, time resolution is 5 µs.

Resonance imaging: 

4 x 4 cm2, spatial resolution ~ 150 µm, 
time resolution is 150 ns.

Front-end optics 
buried in shielding

Cave 
shielding

Beam stop

Radiological 
Materials Area 
(RMA)

Control hutch

Cave door

VENUS wall of signatures
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Largest field of view: 20 x 20 cm2

First 20x20 cm2 large field-of-view radiograph 
measured at VENUS (July 24, 2024)!!!

20 cm

Spatial resolution mask

Imaging detector at VENUS
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Resonance radiography demonstrated with Tantalum foil and 
the microchannel plate (MCP) Timepix (TPX) detector
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Bragg edge radiography demonstrated with Nickel powder 
and the microchannel plate (MCP) Timepix (TPX) detector
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The VENUS control hutch VENUS

We hope to see you at VENUS!
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Outline
• Imaging at the High Flux Isotope Reactor MARS beamline:

– Principle of neutron radiography and computed tomography at a 

continuous source
– The CG-1D imaging beamline
– Examples

• Imaging at the Spallation Neutron Source:
– Principle of neutron radiography at a pulsed source

– Examples
– The  VENUS !!!construction project

• Scientific programming
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ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Scientific programming

5 things you must know

Jean Bilheux

Neutron Imaging Computer Instrument Scientist
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The 5 things that will save your life
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The 5 things that will save your life

1 Pick the right language
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Which language ?

https://www.tiobe.com/tiobe-index/

Python

Matlab
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Which language ?

https://www.tiobe.com/tiobe-index/
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• Huge community  (help, libraries, …)

• Easy to learn (no compiler needed)

• Easy to build GUI (standalone application, Web interface)

• Run on any platform (                              …)

• Notebooks

Python
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Notebooks

https://imaginglectures.github.io/Quantitative-Big-Imaging-2024/
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Notebooks
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Notebooks
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The 5 things that will save your life

1 Pick the right language

2 Stay green
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Stay green We need to preserve our environment!

3.8

3.12

3.9.0

3.12

MyProgram

Anaconda.com

3.13

3.9.2

Python 
environments
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The 5 things that will save your life

1 Pick the right language

2

3

Stay green

Write good code
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Write good code

There is a good chance that 
later, you will be the one trying 
to understand your own code.
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Write good code

• Name of variable is 

what they represent

• Name of method 

indicates what they do 

• Explain strange choices

• Add examples at top of 

methods/classes 

https://www.youtube.com/results?search_query=clean+code+uncle+bob
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Write good code

Workflow

• decide the code to write

• Write the test

• It should fail

• Write the code to pass the test

• It should pass

• Move on to the next one

Advantages

• The unit tests are often used as documentation to 

learn how the software works

• You write better code (simpler)

• People will trust your code 

• You can check the unit test coverage

• Later on, when you make changes, you will quickly 

find out if the software still works

• If someone report a bug, first write a unit test to 

reproduce the bug, then fix it!

Disadvantages

• It seems slower to code (but overall, it’s not)
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Write good code

Code

Unit tests

Documentation

License file

Future work file

…

JOSS

Software X

F1000Research

DOI

Getting a publication out of your software !
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The 5 things that will save your life

1 Pick the right language

2

3

4

Stay green

Write good code

How to keep your job!
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iBeatles

• Program that perform 

automatic strain 

mapping calculation

• 1 million lines of code

• 5 years development

• Kept top secret until 

today (only copy is on 

this machine!)
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iBeatles

Demo time !
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Repositories

• Backup of your project

• Provide a full history (easy to reverse changes, …)

• Ideal for collaboration (parallel work, …)

• Documentation

• Necessary tool for publication of the code

• Easy to share code (web interface, …)

• GitAction (automatic test, deployment, build documentation ….)
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The 5 things that will save your life

1 Pick the right language

2

3

4

5

Stay green

Write good code

How to keep your job!

Use the best debugging tool
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Best debugging tool 

• Any OS

• Any computing language

• It takes no time to learn how to use it

• It never needs any software update

• It has a very small carbon footprint

Each of you will 
leave today with 

that tool!
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Best debugging tool 

• Tell your new friend what 

your program does, and 

you will find what is wrong 

with it !

The Yellow Duck



72

The 5 things that will save your life

1 Python

2

3

4

5

use environments

Good naming & unit tests

Repository

Talk to your yellow duck
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Questions

https://forms.office.com/g/gtdnJGM87r

neutronimaging.ornl.gov
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