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History of Powder Diffraction
 Discovery of X-rays: Roentgen, 1895 (Nobel Prize 1901)

 Diffraction of X-rays: von Laue, 1912 (Nobel Prize 1914)

 Diffraction laws: Bragg & Bragg, 1912-1913 (Nobel Prize 1915)

 Powder diffraction: Developed independently in two countries:
– Debye and Scherrer in Germany, 1916

– Hull in the United States, 1917

 Original methods: Film based

 First commercial diffractometer: 

Philips, 1947 (PW1050) 
– Detectors and optics have improved a

lot, but basic design remains similar!

http://www.msm.cam.ac.uk/xray/images/pdiff3.jpg
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 Oldest method: Debye-Scherrer camera
- Capillary sample surrounded by cylindrical film

- Simple, cheap setup

Original Powder Setups

Cullity; “Elements of X-ray Diffraction”
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Physical Basis of Powder Diffraction

 Powder diffraction obeys the same laws of physics as single 

crystal diffraction

 Location of diffraction peaks is given by Bragg’s law

- 2d sin = n

 Intensity of diffraction peaks is proportional to square of 

structure factor amplitude
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Resonant X-ray Scattering Experiments
 Also referred to as “anomalous diffraction”; this type of 

experiment is carried out close to an absorption edge

 The elastic scattering is given by

f (E,Q) = fo(Q) + fo’(E,Q) + I fo’’(E,Q)

 f  and f  undergo drastic changes close to the absorption 
edges of atoms
- Great way to emphasize contribution of specific atoms

- Especially useful for mixed site occupancies

- In most cases, multiple patterns at different wavelengths are 
collected and analyzed simultaneously
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 f  “mirrors” the absorption 
coefficient

 f  is intimately related to the 
absorption coefficient

Absorption Edges and Anomalous Scattering
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Neutrons: Coherent and Incoherent Scattering
 For X-ray diffraction, we are generally only concerned with 

coherent elastic scattering

 For neutron powder diffraction, we unfortunately need to be 
aware of incoherent scattering as well
- Phase is lost during incoherent scattering

- Contributes to background

- Less of an issue for single crystal experiments, but can be very significant 
for powder experiments

- H is one of the worst culprits (not D!) – talk to beamline scientist what 
their setup can tolerate!

7



Goal of crystallography: Get structure
 Single crystal experiments

- Grow crystals (often hardest step)

- Collect data (usually easy, both access and setup)

- Determine unit cell (very easy for good quality single crystal)

- Reduce data and solve (=determine approximate structure) (often 
easy)

- Optimize structure (=refinement) (requires some care)

 Powder experiments
- Prepare powder sample (often easy)

- Collect data (usually easy, but easy to make mistakes, too!)

- Determine unit cell (can be very hard)

- “Solve structure” (can be even harder – requires expert knowledge!)

- Optimize structure – Rietveld refinement (requires considerable care) 8



What is a Powder?
 A perfect powder sample consists of an infinite number of small, 

randomly oriented crystallites
– Note that this is the underlying definition for many quantitative analysis 

methods!

– In real life, the number is of course not infinite, but should be large to give 
good averaging

– Small particle size: 1-5 m is ideal

 “Powder samples” can come in many different forms:
– Loose powders

– Films, sheets, blocks, wires…

– Basically any “polycrystalline” sample can be used in PXRD – if it is not a 
single crystal, it is considered a “powder sample”
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Observations from Single Crystals

 For a single crystal, there is one orientation in real space, 

resulting in one orientation of the reciprocal lattice

- reciprocal lattice points are resolved and will result in diffraction 

intensity when they touch the Ewald sphere

- Rotating the crystal rotates the reciprocal lattice

Real space            Reciprocal space Real space            Reciprocal space
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Observations from Powders

 A powder sample consists of 

many crystallites with random 

orientations

- we get many overlapping reciprocal 

lattices, resulting in a “sphere” of 

reciprocal lattice points that fulfill 

the Bragg condition at a given 2

- the sphere will intersect the Ewald 

sphere in a circle

- we will observe “powder rings” Cullity; “Elements of X-ray Diffraction”
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Somewhere in Between

Anything from “several single crystals” to “almost homogeneous” is possible!
Often referred to as “graininess problem” (e.g., not enough grains in the beam).
Can result in non-random integrated intensities. 12



Powder Data Display
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Why Use Powder Diffraction?
 Originally, powder diffraction was mainly used for phase 

identification

 Advantages over single crystal methods: Can be used on ANY 
sample
– If you can mount it, you can measure it!

 For some materials, single crystal growth is difficult or impossible
– Powder methods are the only option

 “Real life samples” rarely come as single crystals: Engineering 
materials, formulations etc.
– Powder diffraction can be used on mixtures of compounds

– Peak shape analysis gives insights into size, stress and defects
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Powder crystallography before Rietveld
 Primary strategy: AVOID when it comes to structure 

determination!
- There was no straightforward way to deal with data
- Had to manually integrate intensities
- Overlapping reflections were a big problem

- Usually discarded
- Alternative: Rewriting of single crystal software to refine using 

sums of overlapped reflections

 Powder pattern simulation was more common
- Relatively straightforward
- Conclusions drawn based on similarities between patterns (e.g., 

isostructural compounds)
- Visual comparison

 Main use of powder diffraction was for phase identification 15



Modern Use: What Information Can We 
Get From Powder Diffraction Data?

 Phase identification (qualitative phase analysis)

– Most important/frequent use of PXRD

– Qualitative analysis tool

– Search pattern against database to identify phases present

– Starting materials, known target compounds, likely impurities

– Assumption: The material, or an isostructural material, is in the database

 Phase fraction analysis (quantitative phase analysis)

– Applied to mixtures of two or more crystalline phases

– Compare intensities of selected peaks of all phases

– Theoretically only requires one peak/phase, but better with multiple peaks

– Accurate analysis requires standardization

– Mix known quantities of two phases in several different ratios

– Caution: Possibility of amorphous components
16



What Information Can We Get From 
Powder Diffraction Data? (Cont’d)

 Lattice parameters

– Two modes of analysis:

– Accurate lattice parameters for a compound of known structure

– Unit cell determination for an unknown compound through indexing

– ACCURATE peak positions are crucial!

 Rietveld refinement (structural analysis)

– Least squares based minimization algorithm to obtain the best fit between a 
structural model and a powder pattern

– Starting model necessary to apply this method

– Applicable to simple and complicated structures, single phase and multi-phase 
samples

– Automatically gives phase fractions and lattice parameters  from ALL peaks

– Requires good data for meaningful results 17



What Information Can We Get From 
Powder Diffraction Data? (Cont’d)

 Structure Determination from Powder Data (SDPD)
– Powder diffraction is subject to the same laws of physics as single crystal 

diffraction, but data overlap

– Careful analysis can allow determination of unknown structures

– Usually done with high quality synchrotron and/or neutron data

– Requires excellent data and sound crystallographic knowledge!

 Phase transition behavior
– In situ diffraction experiments

– Temperature-induced phase transitions

– Pressure-induced phase transitions

– Kinetic studies

– Requires specialized setups
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What Information Can We Get From 
Powder Diffraction Data? (Cont’d)

 Line shape analysis

– Width of Bragg peaks is inversely related to crystallite size

– Often used for crystallite size estimates for nanoparticles

– Requires use of a standard to determine instrument contribution first

– Microstrain (nonuniform strain) also results in peak broadening

– Due to atomic disorder, dislocations, vacancies etc.

– Different angular dependence than size effects

– Residual stress can be determined

– Defects like stacking faults and antiphase boundaries also affect line shape

 Texture analysis

– Epitaxial growth in thin films

– Preferred orientation 

– Qualitative and quantitative measurements possible
19



Extracting Information from the Diffractogram

 All diffractograms contain three pieces of information:

– Peak positions

– Peak intensities

– Peak shapes

 Each of these can be used to extract qualitative or quantitative 
information from the data

 Single crystal experiments are only concerned with peak positions 
and intensities, whereas powder diffraction also analyzes peak 
shapes to extract microstructural information from samples

– Often not important to get crystal structure, but can be crucial to understand 
behavior of “real life materials”!
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Peak Positions

 Peak positions can be used to obtain the following pieces of 

information:

– Unit cell dimensions

– d-spacing is related to unit cell constants

– Could be a refinement of a know starting cell or a determination “from 

scratch” by indexing

– Possible space groups

– Look at systematic absences – “no peak” is information, too!

– Qualitative phase analysis

– What’s in the sample?

– Approximate peak positions sometimes suffice for this
21



Standards

 A standard can be used to check the alignment of a diffractometer
– Many different materials commercially available

– SiO2, Si, CeO2, Al2O3…

– Sold through independent vendors (e.g., NIST) or provided by diffractometer 
company

 Easiest to use standards come as pressed solids
– No sample preparation, for Bragg Brentano: Sample height is predefined

 Experimentally determine peak positions of the standard, then 
compare to certified values to construct a calibration curve
– Allows for correction of data collected under same conditions

– Also used to determine instrument constants/wavelength at beamlines

22



Internal Standards

 A standard can also be mixed with your powder sample
– Called internal standard

 You can use any material that is available as a powder and has well-
established lattice constants

 If you are planning to refine a model for your data, a model for your 
internal standard can be refined at the same time
– Constrain standard to known lattice constants, refine sources of peak position 

errors, which also apply to your sample

 Choose a standard with similar absorption properties as your 
sample
– This allows you to account best for ALL sources of error

– E.g., sample transparency, absorption
23



Peak Intensities

 Peak intensities contain information about the following:
– Positions and types of atoms

– Site occupancy of atoms

– Atomic displacement parameters

– Often referred to as “temperature factors”

 Accurate intensities are necessary for:
– Quantitative phase analysis

– Rietveld (structural) refinement

– Structure solution from powder data

 Use integrated peak intensities to eliminate line broadening effects!

 Experimental setup also influences peak intensities
– Lorentz-Polarization factor, absorption…

 So does the sample itself
24



Preferred Orientation
 Some samples do not show random intensities

– Some orientations are over- or underrepresented

 In severe cases, only some lines are observed, others are absent

 Preferred orientation can be desired
– E.g., epitaxial film

 Generally problematic and undesirable for powder data analysis

25



Surface Roughness Effects 
(Microabsorption Problem)

http://www.osti.gov/bridge/servlets/purl/5062229-1CKCM6/5062229.PDF26

This is problematic for 
Bragg-Brentano setups; 
e.g., most of your lab 
diffractometers



Peak Shapes
 Peak shapes are affected by the following:

– Crystallite size

– Significant effects for cystallites below 100 nm

– Microstrain

– Microstrain can lead to a “range” of lattice parameters due to strain

– Ordered defects

– Stacking faults, antiphase boundaries

– Instrument

– Finite source size

– Axial divergence

– Slits

– Detector resolution

 Isotropic or anisotropic peak broadening can result

 For quantitative analysis, a standard with no crystallite size or strain broadening 
must be used to determine the instrumental contribution 27



Examples of Peak Shapes
Gaussian peak shape Lorentzian peak shape

Pseudo-Voigt peak shape
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Sample Related Peak Broadening
 Crystallite size:

- Diffraction from an infinite crystal would give 
infinitely sharp peaks (delta function)

- Finite repeat leads to broadening

- Can be used to calculate crystallite size (Scherrer 
equation), B = FWHM in radians

- For lab instrument: Bsize = 0.9 /(t cos())

- Instrument broadening must be accounted for to get 
meaningful, qualitative results!

- B2
measured = B2

instrument + B2
size

 Strain broadening:

- Results in distribution of lattice constants
- More shift at higher angles – proportional to tan()

 Both effects can be isotropic or anisotropic!

- Anisotropic effects are generally hkl dependent 29



Sample related peak broadening

30



Powder Diffraction Detector Options

 Powder X-ray diffraction can use 1D or 2D detectors

 Area (2D) detectors allow for very fast data collection
– On high intensity synchrotron beamlines, a dataset can be collected in a 

fraction of a second!

– Tradeoff with respect to resolution

– Often used for parametric studies when speed of data collection is most 
important

 Point detectors (1D) allow for very high resolution data
– A single crystal analyzer can be mounted between the sample and the 

detector

– Data collection speed can be improved by using multiple detectors

– Example: 11-BM high resolution diffractometer at APS
31



Powder Diffraction Detector Options

 2D detector (CHESS B2) and 1D detector array (APS 11-BM)

32



Neutron Diffraction: Reactor Sources

 Experimental setup very 

similar to lab X-ray 

diffraction

 Large samples needed

– low intensity beams

 No form factor fall-off 

gives good quality data at 

small d-spacings

– but dmin is often similar to a 

lab X-ray experiment 

Typical monochromator cut 
at ~1.5 Å for T = 300 K

33



Spallation Source – TOF Experiments

 Neutrons are particles with mass, so wavelength and speed 

are correlated (de Broglie)

 Data are plotted as a function of t (TOF)

 Detectors are combined in “banks” at fixed angles

– Each detector bank collects an entire diffraction pattern

– Accessible d-spacing range depends on angle of bank
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Neutron TOF Powder Instruments

 Earlier TOF neutron 

instrument at IPNS (SEPD), 

and modern instrument at 

SNS (POWGEN)

35
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Powder Pattern Analysis Beyond Search/Match

 As stated previously, early use of powder methods, and most 
common use today, was for phase ID

 1966-1969: Hugo Rietveld* introduced a whole pattern fitting 
approach for neutron data
– Nowadays known as “Rietveld method”

– Soon applied to X-ray data (1977)

– Became more feasible with increasing computer power

– “Routine” powder tool by now

 The Rietveld method can be used to verify structures, determine 
accurate lattice parameters, microstructural sample characteristics, 
phase fractions in mixtures etc.

36
*It is with great sadness that we acknowledge the passing of Hugo Rietveld on July 16, 2016.



Major Breakthrough: Overlapped Reflections
 Rietveld witnessed the power of introducing computers into 

crystallography during his dissertation (1961-1964)

 He realized that computers can handle individual datapoint 

intensities, which allowed calculation of |Fhkl| even for 

overlapped reflection!

37



What is the Rietveld Method?
 Least squares based minimization algorithm to obtain the best 

fit between a structural model and a powder pattern
- Demanding, as the algorithm is non-linear

- User decides which parts of the model can be varied

 Each point in the pattern can be regarded as an observation
- “No Bragg intensity” tells you something about your material, too!

 Full pattern fitting
- In contrast to single crystal data, “experiment dependent parameters” 

must be fitted as well: Background, peak shape – sample and 
instrument contributions, lattice constants, …

 Requires an approximate starting model

 Good data are needed! 
38



Parameters in Rietveld Refinements
 Structural variables

- Atom positions, fractional occupancies, atomic displacement parameters (ADPs)

- Only these parameters are refinable in most single crystal software

 Profile parameters

- Background

- Peak shape, including width and asymmetry

- Unit cell constants

- Wavelength

- Diffractometer zero point

- Sample height and transparency

 Correction terms

- Absorption

- Extinction

- Surface roughness

- Preferred orientation
39



Possibilities

 Works for simple and complicated structures
- Thanks to today’s computing power, fast even for complicated structures  

 Can be used to refine several phases as well as mixed 

occupancies
- Use of internal standard possible – excellent lattice constants!

- Quantitative analysis of mixture or versus a standard (amorphous content, too)

- Non-stoichiometry/partial occupancy can be refined

 Refinement of several data sets together
- X-ray and neutron data

- Several different wavelengths => changes scattering contrast between atoms

 Engineering properties
- Residual strain

- Preferred orientation 40



Limitations

 Determination of absolute structure from powder data is 

impossible due to precise overlap of hkl and -h-k-l reflections

 Parameters can sometimes be correlated 

 For limited data, constraints or restraints can be necessary

- Restrain bond distances or bond angles 

- Constrain composition if known

 The method only works if you have a good starting model! 

- Otherwise, divergence might be observed

- A local instead of a global minimum may be found

- YOU need to judge the refinement – no simple rules of thumb for R-

values etc. or cif file and checkcif!
41



Useful Resources
 CCP14: Free software including tutorials and examples 

http://www.ccp14.ac.uk/

– Unfortunately no longer maintained due to lack of funding

 Rietveld mailing list

http://www.mail-archive.com/rietveld_l@ill.fr/

– Not sure whether this website is accessible from here?

 GSAS tutorials
http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography/

– Scroll down to “Software tutorials”

 R. A. Young; “The Rietveld method”

– Comprehensive text including history, description of several Rietveld 
programs, as well as details about certain parameters (e.g. background 
modeling, peak shapes, pattern decomposition…)

 …and many more good books!
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