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Magnetism: Brief Overview



Magnetic Moments from 
Electrons

• Electronic magnetic dipole 
moments arise from:


• spin angular momentum, S


• orbital angular momentum, L

(gs almost exactly 2)

(gL = 1)



Solid, Liquid, Gas

https://www.sciencelearn.org.nz/resources/607-solids-liquids-and-gases

Breaks “Translational 
Symmetry” 

Atoms are fixed on 
average but can move 

coherently

Free to move, 
correlated positions, 
can move coherently 

and incoherently

Free to move, 
uncorrelated 

positions, breaks 
no symmetry



Magnetic ordering
Ferromagnet

T<Tc

Paramagnet

T>Tc

“Spin Gas” 
Rotational symmetry intact


Incoherent dynamics present

“Spin Solid” 
Rotational symmetry Broken


coherent dynamics (spin waves)




Magnetic ordering
Paramagnet

T>TN

Antiferromagnet

T<TN



Other Types of 
Magnetic Order…

These kinds of 
complicated 

structures can be 
identified using 

neutron scattering



Spin Waves (magnons):  
emergent quasi-particles

Single  
Electron Spin Periodic Arrangement Excitation: Spin Wave

λ

i.e. magnon
p = h/λ = ħk

Using neutrons, we can understand the underlying interactions 
between spins by measuring spin wave dispersions



Example of a Magnetic 
Hamiltonian

H = J1

�

�i,j�

Si · Sj + J2

�

��k,l��

Sk · Sl

2J1 > J2 2J1 < J2

The exchange 
parameters (J1, J2) are 

like the “springs” 
between spins in analogy 

to the phonon models 
discussed by Bruce in 
the Previous lecture



Spin liquid
Paramagnet

T>θCW

Spin liquid

T<θCW

“Spin liquid” 
Rotational symmetry intact (like a paramagnet)


BUT spins are correlated over some region

incoherent dynamics (thermal spin liquid)


or coherent dynamics (quantum spin liquid): Fractionalized 
excitations

2J1 = J2 ? 



Magnetism is good for…

• Technology, present and future  

• magnetic storage (multiferroics next? Skyrmions?)


• topological materials (protected edge states)


• Fundamental inquiry 

• what quantum phases are exist in a many body 
correlated spin system? (superconductivity, quantum 
spin liquids….) 



Magnetic Neutron 
Scattering



Can measure (incomplete list!):


• Type of magnetic order (antiferromagnet, 
spiral, etc.)


• Spin wave dispersions - can use to get 
quantitative values of spin-spin interactions 
(“exchange interactions”)


• Presence of short range spin correlations 
through diffuse scattering


• Presence of exotic quasi-particles 
(fractionalization)

Neutron scattering is essential for the study of 
magnetic materials



Magnetic Scattering
Elastic

Quasi-Elastic

Inelastic
• Bragg peaks from Long Range 

Order 
• Diffuse elastic scattering from 

short range correlations

• Relaxational dynamics: 
Broad in energy but 
centered at E = 0

• Spin waves 
• Diffuse inelastic scattering 
• Crystal Electric Field levels 
• Exotic quasi-particles 

(possibly fractionalized?)



Magnetic cross section for 
unpolarized neutron beam

You can also learn more using spin-polarized 
neutrons … see Kathryn Krycka’s lecture tomorrow



Interaction of neutron with 
unpaired electrons

• Neutrons are S=1/2 particles and carry a magnetic dipole 
moment, thus they are sensitive to magnetic potentials


• Neutron scatters from the magnetic potential generated 
by electronic spin and orbital angular momentum

µn = �gnµNSn



Inelastic Magnetic Cross Section 
(proportional to measured intensity)

Magnetic form factor: 
suppresses magnetic intensity 

as Q increases

Polarization Factor: 
only sensitive to components 

perpendicular to Q

Spin-Spin correlation 
function: what we are 
usually interested in

d2�

d�dE� =
k�

k
(�r0)

2N(
1

2
gF (Q))2e�2W

�

��

(��� � Q̂�Q̂�)

� 1

2��

�
dt e�i�t

�

ll�

ei �Q·(�rl� �rl� )�S�
l (0)S�

l� (t)�

See Squires Eqn. 7.73



Magnetic Form Factor: F(Q)

F ( �Q) =

�
S(�r)ei �Q·�rd3r

F(Q) is the Fourier transform 
of the spin distribution in 

real space



Dynamic Structure Factor, 
S(Q,ω)

We often re-write the cross section from before as:
d2�

d�dE� =
k�

k
(�r0)

2N(
1

2
gF (Q))2e�2W

�

��

(��� � Q̂�Q̂�)S��(Q, �)

Encapsulates all the interesting stuff (i.e. the spin -spin correlations) into 
the Dynamic Structure Factor, S(Q,ω), which is the Fourier transform in 
space and time of the Pair Correlation Function

S(Q,!) =
1

2⇡~

Z Z
G(r, t)eiQ·re�i!td3rdt

G(r,t) = Pairwise Correlations in Space and Time



Fluctuation Dissipation Theorem

�(Q,!) = �0(Q,!) + �00(Q,!)

General linear response susceptibility:

S(Q,!) =
1

1� e��~!
�00(Q,!)

⇡(gµB)2

Energy absorbing response

With inelastic neutron scattering, 
we are measuring the imaginary part of the susceptibility

Fluctuation Dissipation Theorem



Elastic Magnetic Scattering from 
a magnetically ordered crystal
d�

d� el
= (�r0)

2N(
1

2
gF (Q))2e�2W | �F�(Q)|2

Vector Magnetic Structure Factor: 
Sum over the magnetic unit cell

�F�( �Q) = �F( �Q) � Q̂ · �F( �Q) take only component 
perpendicular to Q

�F( �Q) =
�

m

�Smei �Q· �rm



Example: determine relative 
Bragg peak intensities

x

y

Test: Q = (0,0)

1

2

3

4

�F(0, 0) = �S1e
2�i(0,0)·(0,0) + �S2e

2�i(0,0)·(0,1)

+�S3e
2�i(0,0)·(1,0) + �S4e

2�i(0,0)·(1,1)

�F(0, 0) = �S1 + �S2 + �S3 + �S4 = 0



Example: determine relative 
Bragg peak intensities

x

y

Test: Q = (0, 1/2)

1

2

3

4

�F(0,
1

2
) = �S1e

2�i(0, 1
2 )·(0,0) + �S2e

2�i(0, 1
2 )·(0,1)

+�S3e
2�i(0, 1

2 )·(1,0) + �S4e
2�i(0, 1

2 )·(1,1)

�F(0,
1

2
) = �S1 � �S2 + �S3 � �S4 = 0



Example: determine relative 
Bragg peak intensities

x

y

Test: Q = (0, 1/2)

1

2

3

4

�F(
1

2
,
1

2
) = �S1e

2�i( 1
2 , 1

2 )·(0,0) + �S2e
2�i( 1

2 , 1
2 )·(0,1)

+�S3e
2�i( 1

2 , 1
2 )·(1,0) + �S4e

2�i( 1
2 , 1

2 )·(1,1)

�F(
1

2
,
1

2
) = �S1 � �S2 � �S3 + �S4 = �4(0, S)

| �F�(
1

2
,
1

2
)|2 =

4�
2
S2

Therefore, intensity is proportional 
to:



Rules for identifying 
magnetic scattering

1. Magnetic scattering gets stronger as Q 
decreases due to the “magnetic form factor”, 
F(Q).  This conveniently contrasts with 
inelastic nuclear scattering (e.g. phonons), 
which increases intensity as Q increases.


2. Bragg Peaks and Spin Waves should 
depend on temperature / other external 
parameters (like magnetic field) in a way that 
is consistent with thermodynamic data.  e.g. 
onset at TN or Tc

In a given magnetic material, you will see both magnetic and 
nuclear scattering: How to distinguish?



Total Moment Sum Rule
• Intensity integrated over all Q and ω is constant.  


• Scattering gets reorganized into different Q, ω as e.g. 
temperature changes, but the total amount is fixed

1

d3Q

�

�

�
d3Q

�
� d� S��( �Q, �) = ��S(0) · �S(0)� = S(S + 1)

integrate over 
the dynamic 

structure 
factor

total amount 
is set by the 
length of the 

spins, S



Magnetic Elastic Scattering 
Examples



Shull, Strauser, Wollan, Physical Review 1951

Magnetic order MnO

Polycrystalline Sample



Elastic magnetic scattering 
from crystals on CORELLI

Mn5(VO4)2(OH)4 single crystal
Above TN, “rods” of 

diffuse magnetic 
scattering - 2D 

correlations 

Below TN, Bragg 
peaks

V. O. Garlea et al, AIP 
Advances 8, 101407 (2018)



Back to an oldie:  Diffuse 
Scattering in MnO Above TN

Data (taken at SXD, ISIS) Reverse Monte Carlo fit 
(“Spinvert” program)

J. A. M. Paddison et al, Phys. Rev. B 97, 014429 (2018)

Above TN, analysis 
of diffuse scattering 
shows longer range 

correlations than 
expected based on 

simple “width of 
diffuse scattering” 
trick.  Correlations 
are not the same as 
the ordered state.



  
Pinch points from “Spin Ice”, 

a disordered but highly 
correlated spin structure

Spin Ice “pinch points”
T. Fennell, et al, Science,vol. 
326, p. 415, 2009 

Measured 
(Ho2Ti2O7,  

(taken at D7, 
ILL)

Predicted

Spin Language “Dumbell” Language

=

=

Castelnovo, Moessner, Sondhi. Nature, 451 (2008)



Magnetic Inelastic 
Scattering Examples



Volume of “Time of Flight” Data

Elastic: 

Static  

Correlations 

Inelastic: 

Dynamic  

Correlations 



Determining exchange interactions with spin 
waves from field polarized state

fit

data, 
H=5T

Yb2Ti2O7

H || to [1-10] H || to [111]

fit

data,
H=3T

3T

(HHH) (00L) (22L) (HH2) (-H+1, -H+1, H+2) (H-1, 2, -H-1)

E
 (m

eV
)

E
 (m

eV
)

(-2H, H+1, H-1)

Er2Ti2O7

Yb2Ti2O7 Er2Ti2O7

J1 -0.09 0.11

J2 -0.22 -0.06

J3 -0.29 -0.10

J4 0.01 0.00
Params lead 

to “Order  
by Disorder”L. Savary, K.A. Ross et al., Phys. Rev. Lett. 109 167201 (2012)

K.A. Ross, et al., Phys. Rev. X 1, 021002 (2011)

(data taken at DCS, 
NCNR)



SpinW - handy tool for 
calculating spin waves!

• Yb2Si2O7 (Quantum Dimer 
Magnet) field-polarized — 
Data taken at CNCS (SNS)

5 x 10-3

4

3

2

1

0

Intensity (arb. units)

0

1

2

3

4 Intensity (arb. units)

Jinter

Jintra

• www.spinw.org

http://www.spinw.org


Extracting exchange 
parameters

Field polarized 
(Semi-Classical)

Quantum 
ground  
state

H

T
Paramagnetic 

H = J1

�

�i,j�

Si · Sj + J2

�

��k,l��

Sk · Sl

Hamiltonian 
with J1,J2… 
unknown

Measured spin 
wave dispersions 

(ideally field 
polarized)

Linear 
Spin Wave 

Theory

Estimates of J1, J2…
etc. 



Fractionalization / two 
particle scattering

• Quantum Spin Liquids are predicted to have many 
body entanglement which leads to fractionalized 
excitations (e.g. a magnon splits into two spinons) 

• Inelastic Neutron Scattering reveals two-particle 
scattering as a continuum (see extra slides at the 
end to see why this forms a continuum)



Two-Spinon continuum in 
Spin 1/2 Chain

e.g. CuSO4·5D2O: spin 1/2 Chain

Mourigal et al, Nature Physics 9, 435-441 (2013)

Already observed in 1D chains: 
entropy wins at finite T, domain 

walls persist and propagate 
New challenge: are there 2D or 

3D materials in which we can 
see this “fractionalization”? 



Diffuse Inelastic Scattering
• NaCaCo2F7: S=1/2 spin frozen state. Data taken at MACS (NCNR). 
• Gapped excitation at (002) 

• Fit to damped harmonic oscillator (DHO) at 3.4 meV 
• Gapless excitations at the magnetic Bragg features (111) 

• Quasi-elastic relaxation plus DHO at 3.4 meV 
•

0 2 4 6 80

50

100

150

E (meV)

In
te

ns
ity

Q = (1̄, 1̄, 1̄)
Q = (0, 0, 2̄)

0.25 meV



Summary
• Neutron Scattering is the definitive probe for magnetism 

in materials


• Elastic scattering can give access to magnetic long range 
ordered states, or short range magnetic correlations


• Inelastic scattering allows the measurement of spin waves 
(which can be used to extract exchange parameters), 
diffusive excitations from disordered states, or 
fractionalized excitations


• Main components of the cross section:  Magnetic form 
factor, Dynamic structure factor, Polarization factor



Good references for a “deep dive” 
into magnetic neutron scattering

• G.L. Squires, "Introduction to the Theory of Thermal 
Neutron Scattering" (book)


• Stephen W. Lovesey, "The Theory of Neutron Scattering 
from Condensed Matter Volume II" (book)


• Randy S Fishman, Jaime A Fernandez-Baca and Toomas 
Rõõm, “Spin-Wave Theory and its Applications to 
Neutron Scattering and THz Spectroscopy”, (book)


• Collin Broholm’s lecture on magnetic neutron scattering, 
online:  http://cins.ca/docs/ss2013/lectures/Broholm.pdf

http://cins.ca/docs/ss2013/lectures/Broholm.pdf




How do we understand the 
two-particle continuum?

e.g.  two “spinons”  OR two “phonons”, “magnons”, etc…



First, single particle inelastic 
scattering:



Inelastic Neutron Scattering measures 
the “Dynamic Structure Factor”

d�

d⌦dE0 / S(Q, ~!) ~! = E0 � E
incident  
neutron  
energy

final  
neutron  
energy

energy  
transfer

E =
1

2
mv2i =

~2k2i
2m

E0 =
1

2
mv2f =

~2k2f
2m

~kf

~ki ~kf
~ki

Scattering triangle

Dynamic  
structure factor

Momentum transfer and energy transfer are linked

2

~Q = ~ki � ~kf



Example: Phonons
• Each point along the dispersion 

curve is a normal mode 
• Quantum theory of lattice 

vibrations:  
• The waves are treated as 

particles 
• Each mode, designated by 

momentum q and branch s has 
an occupation number nqs, 
energy ωs(q) 

• The occupation number counts 
the number of “phonons”

ωs(q)

q

s=1
s=2



E0 � E = �
X

qs

~!qs�nqs

~ ~kf � ~~ki = �
X

qs

~~q�nqs + ~~G

Conservation of energy

Conservation of  
“crystal momentum” 

(G is a reciprocal lattice vector)

Neutron Scattering from 
Phonons

ki
kf

q

Neutron creates a phonon
nqs = nqs + 1

ki
kf

q

Neutron absorbs a phonon
nqs = nqs - 1



Conservation of energy

Conservation of  
“crystal momentum” 

(G is a reciprocal lattice vector)

One Phonon Absorption

ki
kf

q

Neutron absorbs a phonon
nqs = nqs - 1

E0 = E + ~!s(q)

~kf = ~ki + ~q + ~G



Conservation of energy

Conservation of  
“crystal momentum” 

(G is a reciprocal lattice vector)

One Phonon Absorption
E0 = E + ~!s(q)

~kf = ~ki + ~q + ~G

Each ‘ωs’ Specifies a surface 
if we concentrate on a single direction for 

kf, and scan through different  
lengths of |kf| (i.e. scan through E’ ),  

we can measured one point on this surface

E0 � E = ~!s( ~kf � ~ki)

q

q q + G



Conservation of energy

Conservation of  
“crystal momentum” 

(G is a reciprocal lattice vector)

Two Phonon Process

Now a given kf does not uniquely correspond to a given ws(q) 
continuum of scattering observed

E0 = E + ~!s(q) + ~!s0(q
0)

~kf = ~ki + ~q + ~q0 + ~G

E0 = E + ~!s(~q) + ~!s0( ~kf � ~ki � ~q)

q

Neutron absorbs two phonons
nqs = nqs - 1, nq’s' = nq’s' - 1

ki
kf

q0



Multiphonon Continuum 
e.g. 1D chain

q/a (r.l.u.) (kf - ki)/a (r.l.u.)

Acoustic Phonon Dispersion Region of measured intensity



Multiphonon Continuum 
e.g. 1D chain

(ki - kf)/a (r.l.u.)

Acoustic Phonon Dispersion Region of measured intensity

q/a (r.l.u.)



Multiphonon Continuum 
e.g. 1D chain

(ki - kf)/a (r.l.u.) (ki - kf)/a (r.l.u.)

Acoustic Phonon Dispersion Region of measured intensity


