NOMAD

Nanoscale-Ordered Materials Diffractometer

Spallation Neutron Sour

SPECIFICATIONS

BEAMLINE **1B**

NOMAD is a high-flux, medium-resolution diffractometer that uses a large bandwidth of neutron energies and extensive detector coverage to carry out structural determinations of local order in crystalline and amorphous materials. The instrument enables studies of a large variety of samples, ranging from liquids and solutions, glasses, and nanocrystalline materials to long-range-ordered crystals. The enhanced neutron flux at SNS, coupled with NOMAD's advanced neutron optics and detector features, allows for unprecedented access to high-resolution pair distribution functions, smallcontrast isotope substitution experiments, small sample sizes, and parametric studies.

Moderator	Decoupled poisoned supercritical hydrogen
Moderator- to-sample distance	19.5 m
Sample-to- detector distance	0.5–3 m
Wavelength range	0.1–3 Å
Detector angular range	3–175° scattering angle
Initial coverage	4.0 sr
Full detector complement	8.2 sr
Flux on sample	$\sim 1 \times 10^8$ neutrons cm ⁻² sec ⁻¹

21-G02310/jdh Dec 2021

APPLICATIONS

- Materials with short-range ordering
- In situ/operando studies of materials synthesis and structure changes of functioning materials under in situ conditions
- Transient structures of materials under extreme conditions (e.g., at high temperature or high pressure, under the influence of transient fields, or in metastable states)

For more information, contact

Jöerg Neuefeind, neuefeindjc@ornl.gov, 865.241.1635 Jue Liu, liuj1@ornl.gov, 631.488.7719 Cheng Li, lic1@ornl.gov

Managed by UT-Battelle LLC for the US Department of Energy