

# **Probing Ultrafast Dynamics with X-ray FELs**

Diling Zhu Staff Scientist, Science and Research Division, LCLS NX School 2019





### Acknowledgement











- Why time-resolved, why pump probe?
- Basic elements of an X-ray pump probe experiment
- How to get to femtosecond time resolution?
- Some examples and why they need an X-ray FEL
- Outlook, discussion, Q&As

Introduce the thought process in developing and evaluating a potential x-ray free electron laser experiment in the pump probe format.

image credit: http://www.hummingbirdsplus.org

Bright flash light sequence was the key in capturing the 'freeze motion' details of the wing motion.

image credit: https://www.kobistudio.com

### Dynamics becomes faster as we 'zoom in'



### A 'flash light' for atoms and molecules



LCLS does not make more photons per second than APS. In fact, the average flux is quite a bit lower.

SLAC

However, the key difference is 120Hz vs ~6.5MHz in 24 bunch mode, and the diffraction limited divergence of 2 microradian or so.

#### **Beam Parameters:**

- >  $10^{12}$  photons in a ~10 fs pulse
- 0.2 25 keV
- Fully transversely coherent
- Not quite yet fully longitudinally coherent but we have some good ideas to improve it.

### The challenges of going 'faster' & 'brighter'

- Rapid succession of flashes not quite available yet.
- Highest frame rate detectors are still way too slow.
- Too bright a flash can start to disturb your object of interest.

### The pump-probe experimental paradigm



- 1. Need an 'actor' who's willing to perform the same trick time and time again.
- 2. Need a prompt 'poke', and a brief bright flash.
- 3. Need to be able to time the flash accurately with respect to the 'poke'
- 4. 'Actor' needs to return to 'ground state' before trying the sequence again, or have a replacement who would react to the 'poke' exactly the same way.

A quick, and purposeful poke

### The femtosecond action trigger



SLAC

Gérard Mourou and Donna Strickland shared the 2018 Nobel Prize of Physics "for their method of generating high-intensity, ultra-short optical pulses".

# The femtosecond action trigger



SLA0

**THz**: ultrafast polarization switching in ferroelectric materials, strong electric field driven tunneling in material, etc.

**Mid-IR**: resonance to particular phonons connected to, e.g. E-P coupling in Hi-Tc Superconductivity. **IR**: electronic transition in semiconductors, vibrational resonance in materials and molecules, etc.

**Visible**: life, photo synthesis, electronic transitions in molecules, etc.

UV: bond breaking, photo chemistry, photocatalytic reactions, etc.

X-rays: element and chemical specific excitations, core electron excitations.



#### The Camera

- 100+ Hz Mpixel detectors at LCLS, SACLA, PAL-XFEL, SwissFEL.
- 4.5MHz burst mode detector at EuXFEL
- Many oher specialized detectors and new developments.

#### The Flash

- APS, single bunch, ~ 50ps, 10<sup>9</sup> photons per pulse in white beam mode,1-2%BW.
- X-ray FELs, 1-100 fs, 10<sup>12</sup> photons, 0.1% BW.
- Need to time up the flash with respect to the excitation.

### **Timing jitter and time resolution**



$$\tau = \sqrt{\tau_{\rm pump}^2 + \tau_{\rm probe}^2 + \tau_{\rm jitter}^2}$$

### **Timing synchronization & timing jitter**





- Timing difference between the 'clock' signal across the facility.
- Timing synchronization error of the at the electron gun (injector laser)
- Accelerator's RF amplitude and phase noise leads to jitter in electron beam arrival time.
- X-ray generated by the electron may not necessarily at the center of the electron bunch.
- Vibration of x-ray optics, sample ...

State of the art in synchronization has been moving from 100 fs to 10 fs (RMS) over the past decade.

# Shot-to-shot measurement of the timing jitter

Example of spectral-temporal encoding Chirped Continuum (m(n)) Re(n) X-ray pulse time X-ray pulse

X-ray generate material optical property change is mapped over the spectrum of a chirped pulse.



This, as well as spatial-temporal encoding method, have achieved few-femtosecond scale precision in measuring the shot-to-shot timing jitter.



Sample: you diligent actor

#### Absorbed dose (eV/atom) under pink beam: 1 mJ @ 10 keV

|         | 100 nm  | 1 um  | 10 um | 100 um |
|---------|---------|-------|-------|--------|
| diamond | 2300    | 23    | 0.23  | 0.0023 |
| water   | 2700    | 27    | 0.27  | 0.003  |
| silicon | 85000   | 850   | 8.5   | 0.085  |
| iron    | 870000  | 8700  | 87    | 0.87   |
| gold    | 2050000 | 20500 | 205   | 2      |

SLAC

#### Absorbed dose under mono beam: C\*(111), 0.5 eV, 0.01 mJ @ 10 keV

|         | 100 nm | 1 um | 10 um  | 100 um   |
|---------|--------|------|--------|----------|
| diamond | 23     | 0.23 | 0.0023 | 0.000023 |
| water   | 27     | 0.27 | 0.0027 | 0.000027 |
| silicon | 850    | 8.5  | 0.085  | 0.00085  |
| iron    | 8700   | 87   | 0.87   | 0.0087   |
| gold    | 20500  | 205  | 2.05   | 0.02     |

### Sample replacement

### SLAC







Motors Sample stage X-ray pulse

Sample replacement is relatively straightforward for liquid and gas phase samples (assuming you have lots of them), solid target via mechanical translation can be done as well.

https://www6.slac.stanford.edu/news/2015-02-02-5-ways-put-tiny-targets-front-x-ray-laser.aspx

### Liquid jet recovery does take some time



### Solid material damage

### SLAC



Figure 4 | Imprints created by hard XFEL pulses focused with an Ir-filled diamond FZP.

From intentional to unintentional damage, this happens regularly across the X-ray FEL facilities.



Figure 1 | Gold FZPs damaged by 8 keV LCLS pulses. SEM images of identical devices with 1  $\mu$ m high structures and an outermost zone width of 100 nm. (a) no irradiation, (b) after 1,000 pulses, (c) after 10,000 pulses. Pulse power: 1.2 mJ, pulse rate: 60 Hz. The scale bars are 4  $\mu$ m, the view angle is 45°.

C. David, et al., Scientific Reports 1, 57 (2011)

#### Absorbed dose (eV/atom) under pink beam: 1 mJ @ 10 keV

|         | 100 nm  | 1 um  | 10 um | 100 um |
|---------|---------|-------|-------|--------|
| diamond | 2300    | 23    | 0.23  | 0.0023 |
| water   | 2700    | 27    | 0.27  | 0.003  |
| silicon | 85000   | 850   | 8.5   | 0.085  |
| iron    | 870000  | 8700  | 87    | 0.87   |
| gold    | 2050000 | 20500 | 205   | 2      |

SLAC

#### Absorbed dose under mono beam: C\*(111), 0.5 eV, 0.01 mJ @ 10 keV

|         | 100 nm | 1 um | 10 um  | 100 um   |
|---------|--------|------|--------|----------|
| diamond | 23     | 0.23 | 0.0023 | 0.000023 |
| water   | 27     | 0.27 | 0.0027 | 0.000027 |
| silicon | 850    | 8.5  | 0.085  | 0.00085  |
| iron    | 8700   | 87   | 0.87   | 0.0087   |
| gold    | 20500  | 205  | 2.05   | 0.02     |

A few other details

# Matching of pump-probe volume



- In order to probe a 'uniformly excited' region, the probed-volume needed to be chosen to be smaller that the pumped-volume.
- One needs to consider both the size of the beams, and the beam penetration depth inside the samples.
- For solid bulk samples, grazing incidence/exit angle can be used to minimize x-ray penetration
- Another typical approach/solution is to use small and thin samples.

### **Spatial-Temporal Walk-offs**





### **Beamline setup**



- Optics and diagnostics to control and characterize the x-ray pulses: monochromators, focusing optics, intensity diagnostics, profile monitors, slits, harmonic rejection mirrors, etc.
- Optics and diagnostics to control and characterize the pump laser pulses: compressors, OPAs, timing diagnostics, pulse duration diagnostics, beam profile diagnostics, beam stabilization system.
- **Sample environment and manipulation**: diffractometers sample chambers, cryostats and cryojets heating platforms for temperature control, liquid jets and gas jets for sample replacement.
- X-ray Detection System: scattering detectors, emission spectrometers, etc.











- X-ray beam characterization: are we going to damage the sample? Below the damage threshold, how much signal should I expect? Or do we have enough sample to 'circulate'?
- Laser beam characterization: are we going to damage the sample? How much energy am I putting into the sample per unit area? Are we in the linear excitation regime?
- Are both beams hitting the sample?
- Are the two beams sufficiently overlapped in space on the sample?
- Are the two beams sufficiently overlapped in time? What time resolution do we expect with the current setup?

#### For each experiment, I'll ask the same question:

Why do we need the x-ray FEL for the experiment?

SLAC

#### Typical answers are:

- 1. Femtosecond time resolution
- 2. Spatial coherence
- 3. Pulse energy
- 4. To mitigate sample damage
- 5. To capture 'rare', and/or 'transient' state with the highest quality.

### **Example: Electron phonon coupling in FeSe**



Pump: 40 fs 800 nm IR pulses

Probe: 8.7 keV, attenuated mono beam

Sample: FeSe thin film on Nb-STO substrate

**Action**: coherent lattice motion and associated electronic structure variation.

Method: Bragg diffraction and ARPES



### **Example: Acoustic modes in nanocrystal Au**



Pump: 50 fs 800 nm IR pulses

Probe: 9.2 keV, attenuated mono beam

Sample: A single Au nanoparticle

Action: nanoscale thermal acoustic responses within a single nanoparticle

Method: Bragg coherent diffraction imaging (BCDI).



J.N. Clarke, et al., Science 341, 56 (2013)

### **Example: UV induced ring opening reaction**



Pump: 50 fs 267 nm UV pulses
Probe: 8.3 keV pink beam
Sample: Cyclohexadiene in a gas cell
Action: bond breaking and ring opening
Method: X-ray wide angle scattering

SLAC



M. Minitti, et al., PRL 114, 255501 (2015)

### **Example: Electron & spin relaxation in molecules**

Liquid jet X-ray fluorescence a d spectrometer Laser LCLS X-ray pulses PAD b C Ionization X-ray fluorescence potential N energy Valence 1,3MLCT level Зр Absorpti 1,3MLCT Kβ<sub>1.3</sub> Energy 3T 2p Time escence <sup>5</sup>T<sub>2</sub> 15 R(Fe-L)



SLAC

Pump: 70 fs, 520 nm
Probe: 8.0 keV, pink beam
Sample: polypyridyl iron complexes
Action: metal to ligand charge transfer
Method: X-ray emission spectroscopy

### **Example: Protein structural change**





SLAC

**Pump**: 100 fs 532 nm pulses **Probe**: 6.7 to 6.9 keV, pink beam

Sample: horse heart Myoglobin-CO microcrystal

Action: structural changes following the photolysis of the Fe-CO bond.

Method: X-ray protein crystallography

T. Barends, et al., Science 350, 445 (2015)

### A few more not-so-fast examples

### **Example: Material structure under shock wave**



Pump: 15 ns 527 nm, 2J

Probe: 8.2 and 24.6 keV pink beams

Sample: single crystal silicon

Action: elastic-inelastic response under shock compression

**Method**: phase contrast imaging, wide angle scattering, powder diffraction



SLAC

F. Seiboth, *et al.*, APL **112**, 221907 (2019) S. Brown, *et al.*, Science Advances **5**, 8044 (2019)

### **Example: Phase change material**

SLAC





The inner working of the materials behind CD, DVD, and Blueray discs.





Pump: 50 fs 800 nm IR pulses
Probe: 9.5 keV pink beam
Sample: GaSbTe thin film
Action: amorphous to liquid to crystalline structural transition
Method: X-ray wide angle scattering, powder diffraction.

M. Wuttig, et al., Nat. Materials **6**, 824 (2007) P. Zalden, *et al.*, Science **364**, 1062 (2019)

### **Example: YBCO in pulsed high magnetic field**

CSPAD area detector Nagnetic field bulse H YBCO single crystal X-ray FEL pulse at E = 8.8 keV

**Pump**: 1 ms, 30+ Tesla magnetic field pulse **Probe**: 8.9 keV pink beam

Sample: single crystal YBCO

**Action**: appearance of a 3D charge density wave order when super conductivity is suppressed by the fied.

Method: single crystal diffraction



S. Gerber, *et al.*, Science **350**, 949 (2015) H. Jang, et al., PNAS **113**, 14645 (2016)

### **LCLS-II & HE: prospects and challenges**



SLAC

The new FEL will be driven by a superconducting linear accelerator operating at ~1MHz compared to the current 120Hz machine. Is everything going to be 10,000 times better?



### Adding time axis to various x-ray techniques

What has been done so far?

| X-ray Techniques                                     | Status   |
|------------------------------------------------------|----------|
| Imaging, microscopy (scanning, full field)           | A little |
| Tomography                                           | No       |
| Absorption spectroscopy (XANES, EXAFS)               | Yes      |
| Coherent diffractive imaging                         | Yes      |
| Small & wide angle scattering                        | Yes      |
| Powder diffraction                                   | Yes      |
| Emission spectroscopy, fluorescence                  | Yes      |
| Diffraction, crystallography                         | Yes      |
| Surface scattering                                   | A little |
| inelastic scattering (resonant, non-resonant, Raman) | Yes      |
| What's msissing?                                     |          |

- X-ray free electron lasers are for now the brightest sub-nanometer wavelength 'flash light' that you may get your hands on.
- Pump-probe methodology using X-ray FEL gives the x-ray characterization methods you are familiar with a new dimension: femtosecond time axis.
- The key to make an experiment work is spatial temporal overlap.
- The short intense pulse can be used to freeze and capture other transient phenomena too, to overcome radiation damage, or to maximize 'image' quality of relatively rare events.
- Compare to the history of synchrotron experiments (~10<sup>4</sup> beamline-year), the field of x-ray FEL is still in its infancy, at about ~20 beamline-year. There are plenty of unchartered territories that are still waiting to be explored.