

FAST X-RAY IMAGING AND DIFFRACTION

for Engineering Materials Science and Mechanics

Tao Sun

Department of Mechanical Engineering, Northwestern University

> X-ray Science Division, Argonne National Laboratory

Northwestern

26th National School on Neutron and X-Ray Scattering, Argonne, July 30, 2024

CONTENTS

Imaging: Dr. Kamel Fezzaa and Dr. Samuel Clark Diffraction: Dr. Andrew Chuang

- I. High-speed x-ray imaging at the Advanced Photon Source
- II. Fast diffraction experiments at different time scales
- III. Operando synchrotron experiments on metal additive manufacturing

QUESTIONS WE WILL ANSWER TODAY

- 1) What is special about engineering materials science?
- 2) What are the main advantages of synchrotron over lab-source?
- 3) What make APS a unique facility for high-speed x-ray experiments?
- 4) What affect the spatial and temporal resolutions of fast imaging and diffraction?

2

"FAST" PROCESSES IN ENGINEERING SCIENCE

Real materials under real conditions in real time

- Millimeter sample size to represent bulk behavior
- Complex system to deliver realistic work conditions
- Fluid dynamics
- Energetic materials and rapid reactions
- Dynamic loading
- Materials machining and processing
- Additive manufacturing

Dynamic irreversible and non-repeatable materials and engineering processes

X-RAY IMAGING AND MICROSCOPY TECHNIQUES

□ Scanning probe microscopy

Coherent imaging

□ Propagation-based full-field imaging

- Fluorescence contrast
- Absorption contrast
- Absorption fine structure contrast
- Scattering contrast
- Diffraction contrast
- Computed tomography (3D)
- Ptychography
- · Coherent diffractive imaging
- Absorption contrast
- Phase contrast imaging
- Projection microscopy
- Transmission x-ray microscopy
- Diffraction contrast
- Computed tomography (3D)

Spatial resolution: probe size

Spatial resolution: q range

Spatial resolution: detection pixel size

PROPAGATION-BASED FULL-FIELD X-RAY IMAGING

APS 32-ID-B BEAMLINE UNDULATOR SOURCES

Tandem undulators

□ U33 (white beam)

- Length: 2.4 m
- Period: 3.3 cm
- Min Gap: 11 mm
- E1 range: 5~14 keV
- ΔE₁/E₁: 1~2%

U18 ("pink" beam)

- Length: 2.4 m
- Period: 1.8 cm
- Min Gap: 11 mm
- E₁ range: 23.7~25.7 keV
- ΔE₁/E₁: 5~10%

Undulator		Integrated over 1-65 keV		1st harmonic	
Period (cm)	Gap(mm)	Flux*	Singlet	Flux	Singlet
3.3	20	1.8x10 ¹⁶	2.8x10 ⁹	1.3x10 ¹⁶	2.0x10 ⁹ (71%)
	30	4.7x10 ¹⁵	7.3x10 ⁸	4.5x10 ¹⁵	6.9x10 ⁸ (95%)
1.8	11	4.5x10 ¹⁶	6.9x10 ⁹	4.1x10 ¹⁶	6.3x10 ⁹ (92%)

* Unit: ph/s/0.1%BW, 1.5x1.5 mm² beam size

HIGH-SPEED X-RAY IMAGING DETECTION SYSTEM

Scintillator-couple optical detection

- High spatial resolution: imaging sensor pixel size, magnification by the lens
- High temporal resolution: delay time of scintillator, frame rate and exposure time of camera, x-ray pulse structure

SPATIAL RESOLUTION OF IMAGING

- □ X-ray beam size: 2 mm x 2 mm
- □ Camera sensor:
 - CMOS: 18.5 µm/pixel, 1280 x 800, image size reduces as frame rate increases
 - Hybrid CMOS (with on-pixel storage): 30 μm/pixel, 400 x 250, image size remains the same
- □ Objective lens: 2x, 5x, 10x, 20x
- □ Scintillator light emission: visible light (wavelength: 400~700 nm)

TEMPORAL RESOLUTION OF IMAGING AT APS

Exposure time:

- Camera specs (CMOS: 100 ns; Hybrid-CMOS: 50 ns)
- Scintillator decay time

Frame rate:

- Camera specs (CMOS: 1.75 MHz; Hybrid-CMOS: 10 MHz)
- Needed field-of-view for experiment
- X-ray pulse structures

24-bunch mode: MHz imaging with single pulse exposure

Hybrid mode: Fixed frame rates, but stronger single pulse

324-bunch mode: Experiments with > μ s exposure, no intensity fluctuation in each image

APS 32-ID-B HIGH-SPEED EXPERIMENTAL HUTCH

38.5 m 38 m

34.8 m 34.3 m

TIMING SCHEME AND CONTROL OF EXPERIMENTS

Fast shutters

Delay generators

SRS535

0 0

0

HIGH-SPEED X-RAY TECHNIQUES OF HIGHLY DYNAMIC PROCESSES

Fuel spray: visible light vs X-ray

Wang Y. et al. Nature Physics 4, 305-309 (2008)

Thermite reaction: AI-Fe₂O₃

K. Sullivan et al. Combustion and Flames 159, 2-15 (2012)

Fracture of bone upon impact

From Wayne Chen's group, Purdue University

Search Kamel Fezzaa's publications for various high-speed x-ray imaging experiments

CONTENTS

Imaging: Dr. Kamel Fezzaa and Dr. Samuel Clark Diffraction: Dr. Andrew Chuang

- I. High-speed x-ray imaging at the Advanced Photon Source
- II. Fast diffraction experiments at different time scales
- III. Operando synchrotron experiments on metal additive manufacturing

HIGH-SPEED DIFFRACTION DETECTION SYSTEMS AT 32-ID

- Intensifier: LaVision IRO, Quantum Leap
- Camera: Photron SA-Z, Shimadzu HPV-X2
- $\Box Scintillator: Lu_{1.8}Y_{0.2}SiO_5:Ce (LYSO)$
 - Thickness: 300 µm
 - Diameter: 65 mm
 - Al front coating

- Camera: Photron SA-Z
- Intensifier trigger: multiple
- Pixels: 1024 x 1024 (60~70 µm/pixel)
- Min exposure: 100 ps
- Max frame rate: 200 kHz
- Fast dynamics spanning 10s' ms

Camera trigger (+)

Intensifier gating (-)

- Camera: Shimadzu HPV-X2
- Intensifier trigger: single
- Pixels: 400 x 250 (60~70 µm/pixel)
- Min exposure: 100 ps
- Max frame rate: 10 MHz
- Ultrafast dynamics spanning 10s' μs

DATA ANALYSIS SOFTWARE FOR WHITE-BEAM DIFFRACTION

Scattering geometry

HiSPoD: <u>High-Speed Polychromatic Diffraction</u>

PINK BEAM DIFFRACTION AT 32-ID

□ Phase transformation of Ti-6AI-4V

 $\alpha\text{-Ti} \rightarrow \text{melting} \rightarrow \beta\text{-Ti}$ with coarse grains $\rightarrow \alpha\text{-Ti}$ with fine grains

□ 32-ID source

- U18 pink: ~24 keV (1st)
- Bandwidth: ~5%

Detector

• Scintillator + intensifier + optical CMOS camera

Scanning laser mode

Frame rate: 100,000 fps

Exposure: 5 μs X-ray beam size: H100 x V60 μm^2

Northwestern

16

Spot welding mode

C. Zhao, et al., Scientific Reports, 7, (2017) 3602

Exposure: 1 µs

MONO BEAM DIFFRACTION AT 1-ID

□ 1-ID source

- Superconducting undulator
- Mono: E = 55.6 keV

Detector

PILATUS3X 2M CdTe

COMPARISON OF IN SITU DIFFRACTION DATA

- X-ray energy: mid-energy pink beam
- Detector: small indirect detection
- Frame rate: 100s' kHz
- Exposure time: microsecond
- Detector dynamic range: low
- S/N: low

Fast, but limited detection

- X-ray energy: high-energy mono beam
- Detector: large direct detection
- Frame rate: 100s Hz
- Exposure time: millisecond
- Detector dynamic range: high
- S/N: high

Slow, but high resolution

CONTENTS

Imaging: Dr. Kamel Fezzaa and Dr. Samuel Clark Diffraction: Dr. Andrew Chuang

- I. High-speed x-ray imaging at the Advanced Photon Source
- II. Fast diffraction experiments at different time scales
- III. Operando synchrotron experiments on metal additive manufacturing

ADDITIVE MANUFACTURING (3D PRINTING)

Advantages over conventional manufacturing

- Digital manufacturing nature
- · Parts with complex geometries
- Highly customized components
- On site and on demand build
- Short supply chain and easy stock management
- Energy and material saving
- Multi-material build without post assembly

chamber (LPBF)

Rocket engine (DED)

Implant (LPBF)

Heat exchanger (LPBF)

Vehicle parts (BJ)

Northwestern

LASER POWDER BED FUSION

T. Özel, et al., Journal of Manufacturing Science and Engineering, 142, (2020) 011008

Advantages of laser powder bed fusion

- Complex geometries
- Fine structures

LASER POWDER BED FUSION

Highly dynamic phenomena

- 1) Dynamic laser absorption and reflection
- 2) Strong metal vaporization
- 3) Complex melt flow driven by surface tension variation and recoil pressure
- 4) High-velocity particle spattering driven by metal vapor
- 5) Powder entrainment driven by gas flow
- 6) Oscillation and fluctuation of keyhole
- 7) Rapid solidification and phase evolution

LASER POWDER BED FUSION

- Non-equilibrium • thermal conditions
- Stochastic events •

T. Sun, et al., MRS Bulletin, 45, (2020) 927 T. Sun, JOM, 72(3), (2020) 999-1008

- Digital twin Ο
- Feedstock alloys Ο
 - Repeatability and reliability Ο

Qualification and certification issues

PROCESS VISUALIZATION

High-speed visible-light imaging

P.Bidare, et a., Acta Materialia, 142, (2018), 107-120

High-speed near infrared imaging

Unable to see structures below the sample surface, where most of defects are generated

X-RAY VISION OF LASER POWDER BED FUSION

X-RAY VISION OF LASER POWDER BED FUSION

- Material: Al-10Si-Mg
- Laser power: 520 W
- Scan speed: 0.6 m/s
- Recording rate: 30,173 fps
- Exposure: 0.1 ns
- Pixel resolution: 2 µm

Simple ImageJ data processing to highlight melt pool boundary

I1 = Frame 1 / Frame 2

I2 = Frame 2 / Frame 1

Max (I1,I2), then despeckle

MEASURE IMPORTANT PROCESS/STRUCTURE PARAMETERS

Q. Guo, et al., Additive Manufacturing 28, (2019), 600-609

Melt flow

Q. Guo, et al., Additive Manufacturing, 31, (2020), 100939

Particle spattering

Q. Guo, C. Zhao, et al., Acta Materialia, 151, (2018) 169-180

Cooling rate

INFORM, CALIBRATE, AND VALIDATE MODELS

Particle denudation

H. Chen, et al., Acta Materilia. 196, (2020) 154

L. Wang, et al., International Journal of Machine Tools and Manufacture 193 (2023) 104077

X. Li, et al., Additive Manufacturing, 35, (2020) 101362

Z. Gan, et al., Nature Communications, 12, (2021) 2379

CORRELATE SENSORY SIGNALS WITH PROCESS FEATURES

Thermal imaging

Z. Ren, et al., Science, 379, (2023) 89

Ultrasound

Integrating sphere radiography

B. Simonds, et al., Applied Materials Today 23 (2021) 101049

BINDER JETTING

100 µm

X-ray imaging

Simulations

Advantages of binder jetting

- Print \rightarrow debinding \rightarrow sintering
- Capable of printing all materials
- Easy to scale up for mass production
- Fine structures

WIRE LASER DIRECTED ENERGY DEPOSITION

Advantages of wire-laser DED

- Large components
- Fast and efficient
- Minimum structure defects
- Minimum material waste

Optical imaging

Multi-physics simulation

L. Gao, et al., International Journal of Machine Tools and Manufacture, 194, (2024) 104089

L. Gao, et al., Additive Manufacturing, 77, (2023) 103801

WIRE LASER DIRECTED ENERGY DEPOSITION

X-ray imaging

X-ray diffraction

Q (Å⁻¹)

L. Gao, et al., International Journal of Machine Tools and Manufacture, 194, (2024) 104089 L. Gao, et al., Additive Manufacturing, 77, (2023) 103801

Northwest<u>ern</u>

WIRE LASER DIRECTED ENERGY DEPOSITION

The operando x-ray diffraction experiment provides direct evidence that the partially melted feeding wire can reach the melt pool bottom and release solid particles near the mushy zone, which suppress the growth of large columnar grains and cause the formation of unique microstructural heterogeneity.

L. Gao, et al., International Journal of Machine Tools and Manufacture, 194, (2024) 104089

OPERANDO SYNCHROTRON EXPERIMENTS ON AM AT APS

Powder spreading

Electron beam melting

Gas-nozzle direct energy deposition Thermal imaging

Binder jetting

Wire-laser DED

Direct ink writing

Schlieren imaging

Integrated sphere

Ultrasound

Photodiode & microphone

From beamline and various user groups at 1-ID, 2-BM and 32-ID of APS

WHY X-RAY, WHY SYNCHROTRON, WHY APS

Advanced Photon Source: 3rd-generation high-energy synchrotron facility

SYNCHROTRON VS LAB SOURCE

Advantages of synchrotron

1) Higher brightness

→ larger and denser samples; higher temporal resolution

2) Smaller source and further source-to-sample distance

→ higher spatial resolution

3) Various pulse modes

→ versatile time-resolved experiments

4) Broader energy range

 \rightarrow elemental analysis; broader range of materials

5) Advanced optics and detectors

 \rightarrow higher spatial and temporal resolutions

6) Larger experimental hutch

→ ample room for *in situ/operando* apparatus

7) Better coherence

 \rightarrow better phase contrast; coherence-based techniques

Even better at APS-U!

