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About me

• PhD in Crystallography from Ludwig Maximilians
Universität in Munich, Germany

• Postdoc at the Australian National University in 
Canberra, Australia

• Postdoc at Michigan State University

• Instrument scientist at Los Alamos National Laboratory

• Diffraction Group Leader at Oak Ridge National 
Laboratory (SNS and HFIR)

• Director Neutron Data Analysis and Visualization at 
ORNL.

• Distinguished Staff Member and Director Science 
Initiative High Performance Computing, Modeling and 
Data Analytics.

• Founder of Oak Ridge Computer Science Girls.

NPDF at Lujan Center (LANL)

My car Forschungsreaktor München
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First Neutron Scattering Paper ..

This layer of diffuse scattering took several 
month to collect – 180 x 120 points, ~10 min 
per point
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ORNL is home to two world 
class neutron sources

High Flux Isotope 
Reactor (HFIR) Spallation Neutron Source (SNS)
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Materials research crosses facilities

Opportunities

• Multimodal analysis

• Applied Math. concepts

• Advanced Materials 
Modeling http://neutrons.ornl.gov/

grand-challenge-workshops 



66

Diffuse scattering ?

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% vacancies !

Properties might depend on vacancy ordering !! 
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Bragg peaks are blind ..

Bragg scattering: Information about the 

average structure, e.g. average positions, 
displacement parameters and 

occupancies. 
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Diffuse scattering to the rescue ..

Diffuse scattering: Information about two-body 

correlations, i.e. chemical short-range order or 
local distortions. 
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Inverse Problem aka Crystallographic Phase Problem

Intensities measured only 
give |F|and not the phase
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Analyzing diffuse scattering

• Correlation approach: Expansion of 
kinematic scattering equation in terms of 
displacement. Yields set of two-body 
correlations.

• Monte Carlo based computer simulations: 
Scientist might “win” solution to the problem 
..

– Minimize total energy E: AMC

– Minimize (observed – calculated)2: RMC

• More: “Diffuse Neutron Scattering from 
Crystalline Materials” by Nield and Keen, 
Oxford University Press
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The Automatic Monte Carlo Method

Input:

• Observed diffuse scattering

• Starting structure (e.g. average)

• Model for disorder in terms of interaction 
energies for MC simulation.

Result:

• Set of interaction energies for given model 
that best match the data.

Questions:

• Finding the right model ..

• It is very slow ..

Least Squares

For each parameter in MC model

Run MC

Calculate diffuse scattering

Obtain derivatives
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Numerical estimates

of Differentials

Difference between two 
calculated diffraction patterns

Disorder in Fe3(CO)12 – AMC refinement calculated

Data
[100]

[101]



Opportunities using 
Machine Learning

AI is about how we use and 
process data.  It will be, and 

is, transformative in 

knowledge-based 

disciplines.  AI will not 

replace scientists, but 
scientists who use AI will 

replace those who don’t*. 

*Modified from a quote in the Microsoft 
report, “The Future Computed: Artificial 
Intelligence And Its Role In Society”
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Unsupervised Machine Learning – Instrument calibration

POWGEN

Unsupervised clustering algorithm 
for Time focusing and selection of 
groups of detectors with ‘similar’ 
features, e.g. resolution

Work by Yuanpeng Zhang



(SUPERVISED) MACHINE LEARNING



A machine learning method takes a bunch of data and “learns” from it!

MACHINE LEARNING

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig

Machine 

Learning 

Method

Machine’s rules for 

determining whether or not 

an image is a pig

Data



DID IT “LEARN” SOMETHING?

Label: PigLabel: Not a pig

Training Data

The data we give to the machine 

learning method to learn from

Testing Data

The data we hold out and use to 

check to see if the method actually 

learned something!

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig



DEEP LEARNING

Label: PigLabel: Not a pig

Training Data

The data we give to the machine 

learning method to learn from

Testing Data

The data we hold out and use to 

check to see if the method actually 

learned something!

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig

Simulated scattering ‘images’

• Small Angle Scattering

• Diffraction

• Diffuse Scattering 

• Quasi Elastic Scattering

Labels

• Relate to model / parameters

• Related to topology

• Good/Bad
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Machine Learning for classification
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XsymNet: 
ML + Exhaustive Symmetry for Phase Transitions

Objectives with XsymNet

– Lower barrier for subtle or complex phase 
transition studies

– Identify SG, lattice parameters, and 
distortions modes from powder diffraction 
data 

Exhaustive Symmetry - ISODISTORT

– Provides symmetry adapted distortion 
modes to model the phase transition 

  

XsymNet Workflow

1) Generate Subgroup tree (SGT) with ISODISTORT 
Method 3

2) Create 250-1000 perturbations of each subgroup 
member by randomly choosing:

Strain Mode Amplitudes

» 1 to 6 modes depending on symmetry

» Random(-0.01, 0.01)

Displacement Mode Amplitudes    

» Gaussian(0, σ = 0.33)

BEQ Intensity – Thermal Parameters

3) Simulate powder patterns of all perturbed structures

4) Train XsymNet to classify powder patterns by 
subgroup symmetry

5) Classify Experimental diffraction dataS
lid
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XsymNet: ML + Exhaustive Symmetry for Phase Transitions

XsymNet – Convolutional Neural Network

− Accurately classifies subgroup symmetry to 
powder patterns

− Automated Rietveld refinement on top 5 
subgroups → scientist reviews results

Simulated Validation Data

Classification Accuracy 
Metric

α phase β phase

Subgroup

(547 classes)

Top 1 89.2% 87.5%

Top 5 99.5% 98.2%

Confidence 

Rank
α phase β phase

1 0176 0152

2 0088 0077

3 0236 0383

4 0544 0169

5 0183 0170

Experimental Data – Bi2Sn2O7

Parent 
Symmetry CIF

ISODISTORT 
Subgroup Tree

XsymNet 
Classification

Rietveld 
Refinement of 

Top 5

Scientist 
Review
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DeepMD: Zhang et al. Phys. Rev. Lett. 120, 143001 (2018)

NequIP: Batzner et al. https://arxiv.org/abs/2101.03164 (2021)

Machine learning force fields (MLFFs) for neutron scattering

DFT calculations 
to generate 
training datasets

VASP/CP2K/etc.

CADES/HPC

Training of MLFFs

DeePMD/NequIP

DGX

Atomistic 
modeling with 
MLFFs

LAMMPS/i-PI/etc.

Analysis/PC

Neutron scattering 
simulation

OCLIMAX

Analysis/PC

Analysis, 
visualization, and 
interpretation

Mantid/Dave/etc.

Analysis/PC

Task:

Software:

Hardware:

MLFF: Minutes 
on PC

DFT: Days on 
CADES

✓ Simulation of vibration and INS 
spectra of complex materials

10,000 speedup and linear 
scaling with size, while 
inheriting spectroscopic 
accuracy from DFT:

• Disordered, defective, or 
distorted crystals

• Heterogeneous structure 
(interface, boundary, 
guest-host systems)

• Long-range correlations
• Slow dynamics and rare 

events
• Nuclear quantum effects

✓ Nuclear quantum effects in 
spectroscopy

Linker, T.M. et al. Nat Commun 15, 3911 (2024).
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https://arxiv.org/abs/2101.03164
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Direct prediction of powder S(Q,E)

Latent 
space

Simulated 
S(Q,E)

Reconstructed 
S(Q,E)

Training cycle 1

Crystal 
structure

Latent 
space

Training cycle 2

Application cycle

Predicted 
S(Q,E)

Crystal 
structure

Latent 
space

300x300

50

Cheng, Y., et al. Mach. Learn.: Sci. Technol. 4, 015010 (2023).
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Analysis and feature detection in large 
volumes of diffuse x-ray and neutron 
scattering from complex materials

Thomas Proffen, Ray Osborn, Rick Archibald, Stuart 

Campbell, Ian Foster, Scott Klasky, Tashin Kurc, Dave 

Pugmire,  Michael Reuter, Galen Shipman, Chad 

Steed, Chris Symons, Ross Whitfield, Doug Fuller, Guru 

Kora, Mike Wilde, Justin Wozniak

Facilities/Resources

SNS, APS, ALCF; OLCF; and CADES at ORNL
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DOE Science Data Pilot Project

• Diffuse scattering contains information about disorder in materials which 
is critical to understand function.

• Novel approach using pattern recognition and machine learning.

• Aligned with science needs of CORELLI and TOPAZ.

Atlas of Optical Transforms, Harburn, Taylor 
and Welberry (1975)

Compare to observed 
diffuse scattering

Disordered real 
space model
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High Level Demonstration Workflow

SNS – TOPAZ

Neutron Scattering

Feature detection “Streaks” in 

Diffuse scattering data 

APS - X-ray 

Scattering coming 

soon

Diffuse scattering 

simulations over 

parameter space  

Knowledge base of 

experiments and 

simulations

Classification of 

“streaks” into 

candidate stacking 

faults 

Scientific 

visualization and 

visual analytics 

interface presenting 

detected features 

and candidate 

stacking faults 

based on classifiers 

Data sharing and 

catalog of results
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Challenges

• What are the correct labels?

• Sparse data.

• Data management and ‘ML friendly’ metadata.

• Correct normalization for scientific data.
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http://neutrons.ornl.gov

Thank you

Thomas Proffen

tproffen@ornl.gov 
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