

Artificial Intelligence for Scattering Experiments

Thomas Proffen Neutron Scattering Division

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

About me

- PhD in Crystallography from Ludwig Maximilians Universität in Munich, Germany
- Postdoc at the Australian National University in Canberra, Australia
- Postdoc at Michigan State University
- Instrument scientist at Los Alamos National Laboratory
- Diffraction Group Leader at Oak Ridge National Laboratory (SNS and HFIR)
- Director Neutron Data Analysis and Visualization at ORNL.
- Distinguished Staff Member and Director Science Initiative High Performance Computing, Modeling and Data Analytics.
- Founder of Oak Ridge Computer Science Girls.

First Neutron Scattering Paper ..

Acta Cryst. (1993). B49, 599-604

Defect Structure and Diffuse Scattering of Zirconia Single Crystals Doped with 7 mol % CaO

BY TH. PROFFEN, R. B. NEDER AND F. FREY

Institut für Kristallographie und Mineralogie, Theresienstrasse 41, 8000 München 2, Germany

AND W. ASSMUS Physikalisches Institut der Universität Frankfurt, Germany

(Received 21 September 1992; accepted 4 January 1993)

This layer of diffuse scattering took **several month** to collect – 180×120 points, ~ 10 min per point

Fig. 1. Zero layer of the $[1\bar{1}0]$ zone. The intensities are stepped with linear intervals of 25 counts, the lowest intensity represented is 125 counts.

ORNL is home to two world class neutron sources

Reactor (HFIR) Spallation Neutron Source (SNS)

Materials research crosses facilities

Opportunities

- Multimodal analysis
- Applied Math. concepts
- Advanced Materials

FRONTIERS IN DATA, MODELING, AND SIMULATION

Workshop Report Argonne National Laboratory March 30-31, 2015

Peter Littlewood (Argonne National Laboratory) Thomas Proffen (Oak Ridge National Laboratory)

Sponsored by: Oak Ridge National Laboratory

grand-challenge-workshops

Diffuse scattering ?

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% *vacancies* **! Properties might depend on vacancy ordering !!**

Bragg peaks are blind ..

 $\sum_{\text{National Laboratory}} \left|\underset{\text{REACTOR}}{\text{NSOTOPE}}\right|\underset{\text{REACTOR}}{\text{NSUTRON}}$

Diffuse scattering to the rescue..

 $\sum_{\text{National Laboratory}} \left|\underset{\text{REACTOR}}{\text{NSITRON}}\right|\underset{\text{SEACTOR}}{\text{SDTOPE}}$

Inverse Problem *aka* Crystallographic Phase Problem

 $\sum_{\text{National Laboratory}} \left|\underset{\text{REACTOR}}{\text{MSITRON}}\right|\underset{\text{SEACTOR}}{\text{SDTOPE}}$

Analyzing diffuse scattering

- **Correlation approach**: Expansion of kinematic scattering equation in terms of displacement. Yields set of two-body correlations.
- **Monte Carlo based computer simulations**: Scientist might "win" solution to the problem

- Minimize total energy E: AMC
- Minimize (observed calculated)² : RMC
- More: "Diffuse Neutron Scattering from Crystalline Materials" by Nield and Keen, Oxford University Press

Table 1. Summary of the properties of the different components of the diffuse intensity.

LOAK RIDGE SPALLATION National Laboratory | REACTOR

10

..

The Automatic Monte Carlo Method

Input:

- Observed diffuse scattering
- Starting structure (e.g. average)
- Model for disorder in terms of interaction energies for MC simulation.

Result:

• Set of interaction energies for given model that best match the data.

Questions:

11

- Finding the right model ..
- It is very slow ..

LOAK RIDGE SPALLATION National Laboratory REACTOR

MAK RIDGE | HIGH FLUX | SPALLATION
National Laboratory | REACTOR | SOURCE

Opportunities using Machine Learning

AI is about how we use and process data. It will be, and is, transformative in knowledge-based disciplines. AI will not replace scientists, but scientists who use AI will replace those who don't.*

*Modified from a quote in the Microsoft report, "The Future Computed: Artificial Intelligence And Its Role In Society"

Unsupervised Machine Learning – Instrument calibration

Unsupervised clustering algorithm

for Time focusing and selection of groups of detectors with 'similar' features, e.g. resolution

(SUPERVISED) MACHINE LEARNING

MACHINE LEARNING

A machine learning method takes a bunch of data and "learns" from it!

DID IT "LEARN" SOMETHING?

Label: Not a pig Label: Pig

Label: Pig Label: Not a pig

Label: Not a pig Label: Pig

Training Data

The data we give to the machine learning method to learn from

Testing Data

The data we hold out and use to check to see if the method actually learned something!

DEEP LEARNING

Simulated scattering 'images'

- Small Angle Scattering
- Diffraction
- Diffuse Scattering
- Quasi Elastic Scattering

Label: Pig Label: Not a pig Labels

- Relate to model / parameters
- Related to topology
- Good/Bad

Training Data

The data we give to the machine learning method to learn from

Testing Data

The data we hold out and use to check to see if the method actually learned something!

Machine Learning for classification

Figure 2: Comparison between synthetic images and real experimental images. The first and second rows are real experimental images, while the third and forth rows are synthetic images. Images in the same column have the same attribute. From left to right, the attributes are: Ring: Isotropic, Ring: Anisotropic, Halo: Isotropic, Halo: Anisotropic, Diffuse low q: Isotropic, and Diffuse low q: Anisotropic. Visually, synthetic and real images are indiscernible.

2017 IEEE Winter Conference on Applications of Computer Vision

X-ray Scattering Image Classification Using Deep Learning

Boyu Wang¹, Kevin Yager², Dantong Yu², and Minh Hoai¹ ¹Stony Brook University, Stony Brook, NY, USA {boywang, minhhoai}@cs.stonybrook.edu ²Brookhaven National Laboratory, Upton, NY, USA {kyager, dtyu}@bnl.gov

20

XsymNet: ML + Exhaustive Symmetry for Phase Transitions

Objectives with **X**symNet

- Lower barrier for subtle or complex phase transition studies
- Identify SG, lattice parameters, and distortions modes from powder diffraction data

Exhaustive Symmetry - ISODISTORT

– Provides symmetry adapted distortion modes to model the phase transition

XsymNet Workflow

- 1) Generate Subgroup tree (SGT) with ISODISTORT Method 3
- 2) Create 250-1000 perturbations of each subgroup member by randomly choosing:

Strain Mode Amplitudes

- » 1 to 6 modes depending on symmetry
- » Random(-0.01, 0.01)

Displacement Mode Amplitudes

» Gaussian(0, σ = 0.33)

BEQ Intensity – Thermal Parameters

- 3) Simulate powder patterns of all perturbed structures
- 4) Train XsymNet to classify powder patterns by subgroup symmetry
- 5) Classify Experimental diffraction data

XsymNet: ML + Exhaustive Symmetry for Phase Transitions

XsymNet – Convolutional Neural Network

- − Accurately classifies subgroup symmetry to powder patterns
- − Automated Rietveld refinement on top 5 $subgroups \rightarrow scientific reviews$ reviews results

Simulated Validation Data

Experimental Data – $Bi₂Sn₂O₇$

Rietveld Parent ISODISTORT XsymNet Scientist Refinement of Symmetry CIF Subgroup Tree Classification Review Top 5

Machine learning force fields (MLFFs) for neutron scattering

- ✓ Simulation of vibration and INS
- <u>Nuclear quantum effects in</u> spectroscopy

350

400

-
- MLFF: Minutes

DFT: Days on CADES

scaling with size, while inheriting spectroscopic accuracy from DFT:

- Disordered, defective, or distorted crystals
- Heterogeneous structure (interface, boundary, guest-host systems)
- Long-range correlations
- Slow dynamics and rare events
- Nuclear quantum effects

Energy meV Linker, T.M. et al. Nat Commun 15, 3911 (2024).

14

50

100

MAK RIDGE SPALLATION SPALLATION

150

200

Energy transfer (meV)

250

300

 $\frac{2}{9}$ 12

Direct prediction of powder S(Q,E)

Slides thanks to Yongqiang Cheng - chengy@ornl.gov **Slides thanks to Yongqiang Cheng - chengy@ornl.gov**

MAK RIDGE SPALLATION SPALLATION

Cheng, Y., et al. Mach. Learn.: Sci. Technol. 4, 015010 (2023).

Analysis and feature detection in large volumes of diffuse x-ray and neutron scattering from complex materials

Thomas Proffen, Ray Osborn, Rick Archibald, Stuart Campbell, Ian Foster, Scott Klasky, Tashin Kurc, Dave Pugmire, Michael Reuter, Galen Shipman, Chad Steed, Chris Symons, Ross Whitfield, Doug Fuller, Guru Kora, Mike Wilde, Justin Wozniak

Facilities/Resources SNS, APS, ALCF; OLCF; and CADES at ORNL

DOE Science Data Pilot Project

- **Diffuse scattering** contains information about **disorder in materials** which is critical to understand function.
- **Novel approach using pattern recognition and machine learning**.
- Aligned with science needs of CORELLI and TOPAZ.

Atlas of Optical Transforms, Harburn, Taylor and Welberry (1975)

High Level Demonstration Workflow

lobus onli

Challenges

- What are the correct labels?
- Sparse data.
- Data management and 'ML friendly' metadata.
- Correct normalization for scientific data.

Thank you

NXS Lecture - Thomas Proffen: "Machine Learning and AI for **Scattering Experiments"**

Thomas Proffen tproffen@ornl.gov

http://neutrons.ornl.gov