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AbOUT me T Forschungsreaktor MUnchen

 PhD in Crystallography from Ludwig Maximilians
Universitat in Munich, Germany

o Postdoc at the Australian National University in
Canberra, Australia

o Postdoc at Michigon State Universi’ry

Diffraction Group Leader at Oak Ridge National
Laboratory (SNS and HFIR)

« Director Neutron Data Analysis and Visualization at
ORNL.

« Distinguished Staff Member and Director Science
Initiative High Performance Computing, Modeling and
Data Analytics.

« Founder of Oak Ridge Computer Science Girls.
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First Neutron Scattering Paper ..

Acta Cryst. (1993). B49, 599-604

Defect Structure and Diffuse Scattering of Zirconia Single Crystals Doped with
7 mol% CaO

By TH. PrROFFEN, R. B. NEDER AND F. FREY
Institut fir Kristallographie und Mineralogie, Theresienstrasse 41, 8000 Munchen 2, Germany

AND W. AssMUS
Physikalisches Institut der Universitdt Frankfurt, Germany

(Received 21 Seprember 1992; accepted 4 January 1993)

This layer of diffuse scattering took several
month to collect - 180 x 120 points, ~10 min
per point
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Fig. 1. Zero layer of the [1T0] zone. The intensities are stepped
with linear intervals of 25 counts, the lowest intensity
represented is 125 counts.



ORNL is home to two world
class neutron sources
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Materials research crosses facilities

Argonne Tree = ool ERIDGE 4
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FRONTIERS IN DATA, MODELING,
AND SIMULATION

n

Workshop Report
Argonne National Laboratory
March 30-31, 2015

ttlewood (Argonne National Laboratory)
Proffen (Oak Ridge National Laboratory)

Opportunities

* Multimodal analysis

« Applied Math. concepts

« Advanced Materials

Modeling http://neutrons.ornl.gov/

grand-challenge-workshops
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Ditfuse scattering ¢

P OOOO

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% vacancies !
Properties might depend on vacancy ordering !!
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Bragg peaks are blind ..

: Bragg scattering: Infformation about the
: average structure, e.g. average positions,
displacement parameters and

occupancies. I RL-
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Diffuse scafttering to the rescue ..

Diffuse scattering: Information about two-body
correlations, i.e. chemical short-range order or

local distortions. B RN S
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Inverse Problem aka Crystallographic Phase Problem

\
N \

F(h) = Y fi(h)e*rhr

=1

Intensities measured only
give |F|and not the phase
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nalyzing diffuse scattering

Table 1. Summary of the properties of the different components of the diffuse intensity.

« Correlation approach: Expansion of

kinemartic scaftering equation in ferms of Form o h b b
dlsplocemenT Ylelds SeT Of TWO_bOdy Description Short-range order Warren Huang Scattering 3rd order
correlations. (SRO) term Size-effect Ist order TDS size term

() ()
(i yee. ((x7) v e

Lattice averages SRO parameters , .
involved ol <X g > <Y J > etc

« Monte Carlo based computer simulations:
Scientist might “win” solution to the problem

Type of cosine sine cosine sine
Summation
Symmetry symmetric anti-symmetric symmetric anti-symmetric
o« e . . Variation in nil linear, i.e. with quadratic, i.e. cubic, i.e. with
— Minimize total energy E: AMC k—space h e 2 e, b} 2 hyec.
— Minimize (observed - calculated)2: RMC
Dependence on 2 Ja (fA ~fz): 2 2 2 2
fa» Ip for binary (fA—fB) FA-Falp-I5 Fi-falp T3
13 (Fa=13)
MY . Number of
« More: “Diffuse Neutron Scattering from components for ! 6 18 30

Crystalline Materials” by Nield and Keen,

Oxford University Press
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The Automatic Monte Carlo Method

Input: (] Least Squares

« Observed diffuse scattering

For each parameter in MC model

« Starting structure (e.g. average)

¥
« Model for disorder in terms of interaction RUN MC [ G ot e st o

. . . Apply random change of s(i) rii)
energies for MC simulation. - T

Caleulate energy difference AE
between onginal and new state

ReSU Iil: ;E {. :‘.: keep :3. minﬁgn.nslinn..
AE = 0 keep new configuration with
. . . . P=exp(-AE/KT) / [1 + exp(-AE/KT)]
o Set of inferaction energies for given model v
that best match the data. e
Questions: Calculate diffuse scattering
o Flﬂdlng the nghT model .. \ / Obtain derivatives
o |tisveryslow ..
$.0NK RIDGE| st




Disorder in Fe;(CO),,— AMC refinement  calculated

Numerical estimates Data
of Differentials

JAIl _
Wi i 20,

Difference between two
calculated diffraction patterns
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Opportunities using
Machine Learning

Al Is about how we use and
process data. It will be, and
is, fransformartive in
knowledge-based
disciplines. Al will not
replace scientists, but
scientists who use Al will
replace those who don't*.

*Modified from a quote in the Microsoft
report, “The Future Computed: Atrtificial
Intelligence And Its Role In Society”
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Unsupervised Machine Learning — Instrument calibration

Sample Vessel g P A o, Detector Array
L/ Unsupervised clustering algorithm
for Time focusing and selection of

_ THE — groups of detectors with ‘similar’
Beam Monitor 5= w_ull \ features, e.g. resolution

Slit #2

& Slit #1

& .
é 6?1, Fine Radial Coarse Radial
Ollmator Collimator with Argon
Detector Array Balloons
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A machine learning method takes a bunch of data and “learns” from it!

Data

Machine

P Learning

Method

Machine’s rules for
determining whether or not
an image is a pig

L e
Label: Not a pig




DID IT “LEARN” SOMETHING?

Training Data

The data we give to the machine
learning method to learn from

Testing Data

The data we hold out and use to
check to see if the method actually
learned something!




Simulated scattering ‘images’

Small Angle Scattering
Diffraction

Diffuse Scattering
Quasi Elastic Scattering

Labels

* Relate to model / parameters

* Related to topology
* Good/Bad

Training Data

The data we give to the machine
learning method to learn from

Testing Data

The data we hold out and use to
check to see if the method actually
learned something!




Machine Learning for classification

Ring Halo Diffuse low-q
Isotropic Anisotropic Isotropic Anisotropic Isotropic Anisotropic

N

2017 IEEE Winter Conference on Applications of Computer Vision

Real images

X-ray Scattering Image Classification Using Deep Learning

Boyu Wang', Kevin Yager?, Dantong Yu?, and Minh Hoai'
'Stony Brook University, Stony Brook, NY, USA
{boywang, minhhoai}lBcs.stonybrock.edu
“Brookhaven National Laboratory, Upton, NY, USA

{kyager,dtyu}@bnl.gov

Synthetic images

Figure 2: Comparison between synthetic images and real experimental images. The first and second rows are real experimen-
tal images, while the third and forth rows are synthetic images. Images in the same column have the same attribute. From left
to right, the attributes are: Ring: Isotropic, Ring: Anisotropic, Halo: Isotropic, Halo: Anisotropic, Diffuse low q: Isotropic,
and Diffuse low q: Anisotropic. Visually, synthetic and real images are indiscernible.
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XsymNet:
ML + Exhaustive Symmetry for Phase Transitions

Objectives with XsymNet
— Lower barrier for subtle or complex phase

XSYMNET

transition studies XsymNet Workflow
— ldentify SG, lattice parameters, and 1) Generate Subgroup tree (SGT) with ISODISTORT
distortions modes from powder diffraction Method 3
data 2) Create 250-1000 perturbations of each subgroup
_ member by randomly choosing:
Exhaustive Symmetry - ISODISTORT Strain Mode Amplitudes
— Provides symmetry adapted distortion » 1 to 6 modes depending on symmetry
modes to rcpodel the phase transition » Random(-0.01, 0.01)

Bi1_1_1 Mod

Displacement Mode Amplitudes
» Gaussian(0, o = 0.33)
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y — 3) Simulate powder patterns of all perturbed structures
( 4) Train XsymNet to classify powder patterns by

— subgroup symmetry

— 5) Classify Experimental diffraction data
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XsymNet: ML + Exhaustive Symmetry for Phase Transitions
XsymNet — Convolutional Neural Network

- Accurately classifies subgroup symmetry to

powder patterns Experimental Data — Bi,Sn,0-

- Automated Rietveld refinement on top 5 .
: : : Confidence
subgroups — scientist reviews results Rank a phase B phase

Simulated Validation Data ! 0176 Uil

Y 2 0088 0077

Classification Accu ra?cy o phase B phase 3 0236 0383

— 4 0544 0169

Subgroup TOp 1 89.2% 87.5% 5 0183 0170
(547 classes) Top 5 99.5% 98.2%

Parent ISODISTORT XsymNet Refﬁ'zmee'gf o Scientist
Symmetry CIF | Subgroup Tree Classification Top 5 Review
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Machine learning force fields (MLFFs) for neutron scattering

Task:] DFT calculations Training of MLFFs Atomistic Neutron scattering] | Analysis,
to generate modeling with simulation visualization, and
training datasets MLFFs interpretation
Software: | VASP/CP2K/etc. " DeePMD/NequlP | LAMMPS/i-Pl/etc. M OCLIMAX M Mantid/Dave/etc.
Hardware:| CADES/HPC DGX Analysis/PC Analysis/PC Analysis/PC

DeepMD: Zhang et al. Phys. Rev. Lett. 120, 143001 (2018)
NequlP: Bafzner et al. https://arxiv.org/abs/2101.03164 (2021)

v Simulation of vibration and INS v" Nuclear guantum effects in
spectra of complex materials spectroscopy

10,000 speedup and linear
scaling with size, while
inheriting spectroscopic
accuracy from DFT:

Allegro TRPMD 60K | | ° Disordered, defective, or
: distorted crystals
MLFF: Minutes |/ « Heterogeneous structure

on PC — ] (inferface, boundary,

Pl . guest-host systems)
2 WM | . DFT: Days on Vision 60K - Long-range correlations
° 0‘ - I5UI - IIOUI - I].50I - IZUOI - I25[; - I3UUI - ‘35[]' N I400‘ - I450 CADES J ¢ SlOW dynOmlCS Ond rOre

Energy transfer (meV) events
0 50 40 60 80 100 |° Nuclearquantum effects

OK Lattice Dynamics

— MOF CP2K (DFT)
— MOF DEEPMD IPI (MLFF) ]
~ MOF DEEPMD LAMMPS (MLFF) | 1
—— MOF NEQUIP LAMMPS (MLFF) |
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https://arxiv.org/abs/2101.03164

Direct prediction of powder S(Q,E)
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Analysis and feature detection in large
volumes of diffuse x-ray and neutron
scattering from complex materials

Thomas Proffen, Ray Osborn, Rick Archibald, Stuart
Campbell, lan Foster, Scott Klasky, Tashin Kurc, Dave
Pugmire, Michael Reuter, Galen Shipoman, Chad
Steed, Chris Symons, Ross Whitfield, Doug Fuller, Guru
Kora, Mike Wilde, Justin Wozniak

Facilities/Resources
SNS, APS, ALCF; OLCF;, and CADES at ORNL
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DOE Science Data Pilot Project

 Diffuse scattering contains information about disorder in materials which
Is critical to understand function.

 Novel approach using pattern recognition and machine learning.
e Aligned with science needs of CORELLI and TOPAZ.

Disordered real Compare to observed
space model diffrwnaa‘:ering

Atlas of Optical Transforms, Harburn, Taylor
and Welberry (1975)
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High Level Demonstration Workflow

Transited Tansfomed b

Extraction,
Classification,
Visualization

Data: Data: e.g.
Gigabytes to Diffuse
Terabytes Scattering

Raw Data

SNS - TOPAZ
Neutron Scattering

Feature detection “Streaks” in
Diffuse scattering data

APS - X-ray
Scattering coming
soon

7N

FCC
ABC

Scientific
Classification of visualization and
“streaks” into visual analytics
candidate stacking interface presenting
faults detected features

and candidate
stacking faults

5 A
Diffuse scattering
simulations over  Knowledge base of
parameter space ~ €xperiments and
simulations
OAK RIDGE | i | S5
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Data sharing and
catalog of results

DISCUS
SIMULATION PACKAGE

=, e
Exploratory Data analysis ENvironment

globus online




Challenges

e What are the correct labelse
e Sparse data.
« Data management and ‘ML friendly’ metadata.

e Correct normalization for scientific data.
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Thank you

NXS Lecture - Thomas Proffen:
“Machine Learning and Al for
Scatterinag Experiments”

Thomas Proffen

tproffen@ornl.gov http://neutrons.ornl.gov
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