# FAST X-RAY IMAGING AND DIFFRACTION FOR ENGINEERING MATERIALS SCIENCE

Tao Sun

### **Department of Materials Science and Engineering**

**University of Virginia** 

24th National School on Neutron and X-Ray Scattering July 19, 2022







- I. High-speed x-ray imaging at 32-ID-B beamline of Advanced Photon Source
- II. Operando synchrotron experiments on metal additive manufacturing
- III. Fast diffraction experiments at different time scales (32-ID vs 1-ID)

32-ID: Dr. Kamel Fezzaa and Dr. Samuel Clarke 1-ID: Dr. Andrew Chuang



### **QUESTIONS WE WILL ANSWER TODAY**

- 1) What is special about engineering materials science?
- 2) What are the main advantages of synchrotron over lab-source?
- 3) What make APS an unique facility for high-speed x-ray experiments?
- 4) What affect the spatial and temporal resolutions of the imaging experiment?
- 5) How to choose different in situ diffraction techniques?

# **"FAST" ENGINEERING MATERIALS SCIENCE**

### Real materials under real conditions in real time

- Millimeter sample size to represent bulk behavior
- Complex system to deliver realistic work conditions

- Fluid dynamics
- Energetic materials and rapid reactions
- Dynamic loading
- Materials machining and processing
- Additive manufacturing

Dynamic irreversible and nonrepeatable materials and engineering processes













# **X-RAY IMAGING AND MICROSCOPY TECHNIQUES**

### □ Scanning probe microscopy



□ Coherent imaging

- Fluorescence contrast
- Absorption contrast
- Absorption fine structure contrast
- Scattering contrast
- Diffraction contrast
- Computed tomography (3D)
- Ptychography
- Coherent diffractive imaging

### Propagation-based full-field imaging



- Absorption contrast
- Phase contrast imaging
- Projection microscopy
- Transmission x-ray microscopy
- Diffraction contrast
- Computed tomography (3D)

Spatial resolution: probe size

Spatial resolution: q range

Spatial resolution: detection pixel size



### **PROPAGATION-BASED FULL-FIELD X-RAY IMAGING**



# **HIGH-SPEED X-RAY IMAGE DETECTION SYSTEM**



#### Scintillator-couple optical detection

- High spatial resolution: imaging sensor pixel size, magnification by the lens
- High temporal resolution: delay time of scintillator, frame rate and exposure time of camera, x-ray pulse structure





# **SPATIAL RESOLUTION**

- □ X-ray beam size: 2 mm x 2 mm
- Camera sensor:
  - CMOS: 20 µm/pixel, 1024 x 1024, image size reduces as frame rate increases
  - Hybrid CMOS (with on-pixel storage): 30  $\mu$ m/pixel, 400 x 250, image size remains the same
- □ Objective lens: 2x, 5x, 10x, 20x
- □ Scintillator light emission: visible light (wavelength: 400~700 nm)



### **TEMPORAL RESOLUTION**

### **Exposure time**:

- Camera specs (CMOS: 100s' ns; Hybrid-CMOS: 50 ns)
- Scintillator decay time

### **Frame rate**:

- Camera specs (CMOS: 1 MHz; Hybrid-CMOS: 10 MHz)
- Needed field-of-view for experiment
- X-ray pulse structures





# **24-bunch mode**: MHz imaging with single pulse exposure

**Hybrid mode**: Fixed frame rates, but stronger single pulse

**324-bunch mode**: Experiments with > μs exposure, no intensity fluctuation in each image



# **32-ID BEAMLINE UNDULATOR SOURCES**

#### **Tandem undulators**

#### **U33 (white beam)**

- Length: 2.4 m
- Period: 3.3 cm
- Min Gap: 11 mm
- E1 range: 5~14 keV
- ΔE<sub>1</sub>/E<sub>1</sub>: 1~2%

#### **U18 (pseudo pink beam)**

- Length: 2.4 m
- Period: 1.8 cm
- Min Gap: 11 mm
- E<sub>1</sub> range: 23.7~25.7 keV
- ΔE<sub>1</sub>/E<sub>1</sub>: 5~10%



| Undulator   |         | Integrated over 1-65 keV |                     | 1st harmonic         |                           |  |
|-------------|---------|--------------------------|---------------------|----------------------|---------------------------|--|
| Period (cm) | Gap(mm) | Flux*                    | Singlet             | Flux                 | Singlet                   |  |
| 3.3         | 20      | 1.8x10 <sup>16</sup>     | 2.8x10 <sup>9</sup> | 1.3x10 <sup>16</sup> | 2.0x10 <sup>9</sup> (71%) |  |
|             | 30      | 4.7x10 <sup>15</sup>     | 7.3x10 <sup>8</sup> | 4.5x10 <sup>15</sup> | 6.9x10 <sup>8</sup> (95%) |  |
| 1.8         | 11      | 4.5x10 <sup>16</sup>     | 6.9x10 <sup>9</sup> | 4.1x10 <sup>16</sup> | 6.3x10 <sup>9</sup> (92%) |  |

\* Unit: ph/s/0.1%BW, 1.5x1.5 mm<sup>2</sup> beam size



### **32-ID-B EXPERIMENTAL HUTCH**



|                | ~ |
|----------------|---|
| BEAM DIRECTION | > |
|                | - |





11

# **32-ID-B EXPERIMENTAL HUTCH**





### **TIMING SCHEME AND BEAMLINE CONTROL**



Opening — 50 ms — Closing

**Fast shutters** 



**Delay generators** 













# **"FAST" ENGINEERING MATERIALS SCIENCE**



Fuel spray: visible light vs X-ray







Thermite reaction: Al-Fe<sub>2</sub>O<sub>3</sub>



K. Sullivan et al. Combustion and Flames 159, 2-15 (2012)

#### Fracture of bone upon impact



From Wayne Chen's group, Purdue University



Wang Y. et al. Nature Physics 4, 305-309 (2008)

14

# **METAL ADDITIVE MANUFACTURING**

### Basics of additive manufacturing technologies (3D printing)

#### Build parts layer by layer

- Digital manufacturing nature
- Parts with complex geometries
- Highly customized components
- On site and on demand build
- Short supply chain and easy stock management
- Potentially energy and material saving
- Been around for > 30 years: from rapid prototyping and tooling to end-use product manufacturing
- □ Recent surge of popularity was driven by
  - Expiration of a few key patents
  - Advance of computer hardware and software
  - Reduced cost of key components, e.g. laser source
  - Need for complex parts with improved performance in many industries
  - Need for secure supply chain

Complex objects



Heat exchanger





Piston



Implant

# **METAL ADDITIVE MANUFACTURING**

#### Laser powder bed fusion



T. Özel, et al., Journal of Manufacturing Science and Engineering, 142, (2020) 011008

- Powder bed
- Scanning laser melting
- Electron beam technique: electron beam melting (EBM)

#### **Directed energy deposition**

**Powder Feed** 

Melt

Nozzle

Single Wall

Deposit

Laser Beam

**Build Plate** 

**Binder jetting** 



A. Reichardt, et al., Materials & Design, 104, (2016)

- Printhead with heat source and feedstock built in
- Heat source: laser or electron
   beam
- Feedstock: powder and wire

- Powder bed
- Liquid binder "gluing"
- All type of materials
- Print + sintering



# **CURRENT PROBLEMS IN LASER POWDER BED FUSION**

### **Current problems**

- Substantial structure defects, e.g. porosity, cracks, etc
- High-fidelity models to capture all physics
- Build repeatability and reliability (particularly fusion based AM)

### **Challenges for characterization**

- Defects are underneath surface
- Complex energy-matter interaction and mass/heat flow
- Multiscale structures and dynamics



D. Gu, et al., International Materials Reviews, 57, (2012) 133



M. Wang, et al., Nature Materials, 17, (2018) 63



### WHY X-RAY, WHY SYNCHROTRON, WHY APS

Advanced Photon Source: 3<sup>rd</sup>-generation high-energy synchrotron facility





### **LASER POWDER BED FUSION**



# Highly dynamic processes induced by the extreme thermal conditions

- High temperature: beyond boiling temperature
- High heating and cooling rates:  $10^5 10^7$  K/s
- Large thermal gradient: 10<sup>3</sup> 10<sup>7</sup> K/mm
- Short laser-metal interaction time:  $\mu s$  ms



#### Phenomena

- Melting and vaporization of metal
- Melt flow inside the melt pool
- Particle spattering and powder entrainment
- Oscillation of melt pool and vapor depression zone
- Rapid solidification and phase transformation



### **REAL-TIME MONITORING AND SENSING OF LPBF**

#### High-speed visible-light imaging



P.Bidare, et a., Acta Materialia, 142, (2018), 107-120

#### **High-speed near infrared imaging**



Unpublished

#### Synchrotron x-ray imaging





# LASER POWDER BED FUSION EXPERIMENT AT APS



- Top view camera
- Laser scanner
- Fiber laser

- Sample chamber
- Sample motor stack
- **Chamber motors**
- Optic table with casters



**Diffraction detector** 

**Imaging detector** 

Fused silica laser entrance window



Sample

### **X-RAY VISION OF LASER POWDER BED FUSION**



- Material: Al-10Si-Mg
- Laser power: 520 W
- Scan speed: 0.6 m/s
- Recording rate: 30,173 fps
- Exposure: 0.1 ns
- Pixel resolution: 2 μm

Simple ImageJ data processing to highlight melt pool boundary

I1 = Frame 1 / Frame 2



I2 = Frame 2 / Frame 1









# **QUANTITATIVE MEASUREMENTS**



#### Melt pool and keyhole morphologies

#### Melt flow



#### **Particle spattering**



Q. Guo, C. Zhao, et al., Acta Materialia, 151, (2018) 169-180

Collaboration with Lianyi Chen at University of Wisconsin-Madison



Q. Guo, et al., Additive Manufacturing, 31, (2020), 100939

### **CALIBRATE AND VALIDATE MODELS**



N. Kouraytem, et al., Physical Review Applied 11, (2019), 064054



X. Li, et al., Additive Manufacturing, 35, (2020) 101362



Z. Gan, et al., Nature Communications, 12, (2021) 2379



unpublished

Collaboration with Wenda Tan at University of Michigan, and Wing Kam Liu and Zhengtao Gan at Northwestern University



### **MULTI-MODAL SENSING**



### **DYNAMICS OF VAPOR DEPRESSION**

### Why study keyhole? Laser melting modes Keyhole connects energy coupling efficiency, Ι. Conduction Keyhole melting mode, and defects Keyhole cannot be directly visualized using 11. other techniques Low laser absorption $\rightarrow$ $\begin{cases} Conduction \rightarrow Lack-of-fusion voids \\ Transition & \uparrow \end{cases}$ Major defects in LPBF parts High laser absorption $\rightarrow \begin{cases} Stable keyhole \\ Unstable keyhole \rightarrow Keyhole porosity \end{cases}$



100 um

## **KEYHOLE DYNAMICS AND FUNDAMENTAL PHYSICS IN LPBF**

#### Stable keyhole



#### **Unstable keyhole**



#### **Further reading**

- C. Zhao, N. Parab, X. Li, K. Fezzaa, W. Tan, A. Rollett, T. Sun, "Critical instability at moving keyhole tip generates porosity in laser melting", Science, 370, (2020) 1080
- C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, T. Sun, "Bulk explosion induced metal spattering during laser processing", Physical Review X, 9, (2019) 021052
- R. Cunningham\*, C. Zhao\*, N. Parab, K. Fezzaa, T. Sun, A. Rollett, "Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-ray Imaging", Science, 363, (2019) 849 (\*equal contribution)
- S. Hojjatzadeh, N. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, L. Escano, M. Qu, X. Xiao, K. Fezzaa, W. Everhart, T. Sun, L. Chen, "Mechanisms of pore elimination during 3D printing of metals", Nature Communications, 10, (2019) 3088
- Z. Gan, O. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, and WK. Liu, "Universal scaling laws of keyhole stability and porosity in 3D printing of metals", Nature Communications, 12, (2021) 2379
- I. Bitharas, N. Parab, C. Zhao, T. Sun, A.D. Rollett and A.J. Moore, "The interplay between vapour, liquid, and solid phases in laser powder bed fusion", Nature Communications, 13, (2022), 2959
- S. Khairallah, T. Sun, B. Simonds, "Onset of periodic oscillations as a precursor of a transition to pore-generating turbulence in laser melting", Additive Manufacturing Letters, 1, (2021) 100002
- B. Simonds, J. Tanner, A. Artusio-Glimpse, P. Williams, N. Parab, C. Zhao, **T. Sun**, "The Causal Relationship between Melt Pool Geometry and Energy Absorption Measured in Real Time During Laser-Based Manufacturing", Applied Materials Today, 23, (2021) 101049



# **POWDER-FEED DIRECTED ENERGY DEPOSITION**

A few generations

of operando DED

systems

#### **Gravity-feed**





S. Wolff, et al., Scientific Reports. 9, (2019) 962

28

Collaboration with Dr. Sarah Wolff at TAMU and Dr. Jian Chao at Northwestern



Pores inside particle Pores from particle top surface Pores entrapped by particle bottom Inert das Inert gas Inert gas Delivered Pores formed on Pores inside particle particle top surface particle Fabricated Fabricated Surface lave uctuation Delivered particle Melt-track Pore boundar motions Pores after shrinking and spheroidization Pores after shrinking Final pore Substrate Substrate and spheroidization Substrate Keyhole pores (Type I) Keyhole pores (Type II) Keyhole pores (Type III) Inert gas Inert gas Inert gas Laser Delivered Laser Laser beam Particle particle beam beam Delivered particle Final Keyhole Keyholepore Kevhol Final pore Substrate Substrate Substrate Lack of fusion of the particle Particle movement in the melt pool Pores induced by inert gas Inert das Inert das Inert gas Particle Partially Pores formed on melted Melt flow Fabricated ven by particle front surface boundary particle laver Pore Delivered particle Melt flow Pores after shrinking Substrat Substrate Substrate and spheroidization



S. Wolff, et al., International Journal of Machine Tools and Manufacture, 166, (2021) 103743 S. Wolff\*, S. Webster\*, et al., JOM, 73, (2021) 189



**Blown-powder** 

### **BINDER JETTING**



Collaboration with John Barnes at TBGA, Dan Brunemer at ExOne, and Tony Rollett at CMU SS316, spherical, 30 µm Powder ejection Powder 100 µm



depletion layer

Balling

N. Parab, et al, Scientific Reports, 9, (2019) 2499



# **HIGH-SPEED DIFFRACTION DETECTION SYSTEMS AT 32-ID**



Intensifier: LaVision IRO, Quantum Leap
 Camera: Photron SA-Z, Shimadzu HPV-X2
 Scintillator: Lu<sub>1.8</sub>Y<sub>0.2</sub>SiO<sub>5</sub>:Ce (LYSO)

- Thickness: 300 μm
- Diameter: 65 mm
- Al front coating





- Camera: Photron SA-Z
- Intensifier trigger: multiple
- Pixels: 1024 x 1024 (60~70 μm/pixel)
- Min exposure: 100 ps
- Max frame rate: 200 kHz
- Fast dynamics spanning 10s' ms







- Camera: Shimadzu HPV-X2
- Intensifier trigger: single
- Pixels: 400 x 250 (60~70 μm/pixel)
- Min exposure: 100 ps
- Max frame rate: 10 MHz
- Ultrafast dynamics spanning 10s'  $\mu s$



Intensifier gating (-)

### **DATA ANALYSIS SOFTWARE**

### **HiSPoD**: <u>High-Speed Polychromatic Diffraction</u>

Experiment Paramet



| ite<br>tensite<br>24 26 | Sample-8o-detector (mm) Pixel size (um) Direct beam X (pixel) Image dimension (V AH) X Load parameters Sample L Phase 1, content % h K i bit Cubc Oubc Oubc Oubc Oubc Oubc Oubc Oubc Fiss Load Data Files Load background file Pip Remove dat Copyresults Save | Detector angle (degree)<br>Scaling factor (M) 1<br>Direct beam Y (pixel)<br>Number of harmonic<br>Export parameters<br>attice Structure<br>Phase 2, content % h k i int<br>Cubic<br>a (A) alighta<br>b (A) beta<br>b (A) beta<br>b (A) beta<br>b (A) beta<br>Cubic<br>Antalysis Tool5<br>Find direct beam (Direction)<br>Calculate quase (Simulate direction)<br>phi points phi res (deg)<br>(th) of data k(th) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data<br>Cubic simulation (ipth) of series<br>Vertiav (th) Get k(a) of data | Simulation                                                               | $I_{e} = \int_{E_1}^{E_2} \left( \sum_{i=1}^{n} I_{hkl_i}(\theta, \theta) \right)$ |      |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|
| (020)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | data<br>data<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | -)<br>Raw data<br>-)<br>65 170 1 100 195 200 205<br>¢                              | Time |

#### Scattering geometry









T. Sun, K. Fezzaa, J. Synchrotron Rad. (2016). 23, 1046. http://hispod.readthedocs.io/en/latest/

### **PINK BEAM DIFFRACTION AT 32-ID**



#### □ Phase transformation of Ti-6AI-4V

 $\alpha$ -Ti  $\rightarrow$  melting  $\rightarrow \beta$ -Ti with coarse grains  $\rightarrow \alpha$ -Ti with fine grains

#### **32-ID source**

- U18 pink: ~24 keV (1st)
- Bandwidth: ~5%

#### Detector

• Scintillator + intensifier + optical CMOS camera

#### Scanning laser mode



### Spot welding mode



C. Zhao, et al., Scientific Reports, 7, (2017) 3602





Frame rate: 100,000 fps Exposure: 5  $\mu$ s X-ray beam size: H100 x V60  $\mu$ m<sup>2</sup>



32

### **MONO BEAM DIFFRACTION AT 1-ID**



(with Andrew Chuang, APS)

#### □ 1-ID source

- Superconducting undulator
- Mono: E = 55.6 keV

#### Detector

• PILATUS3X 2M CdTe

Frame rate: 250 fps Exposure: 1 ms

S. Oh, et al., Materials Research Letters, 9, (2021) 429



# **COMPARISON OF IN SITU DIFFRACTION DATA**



- X-ray energy: mid-energy pink beam
- Detector: small indirect detection
- Frame rate: 100s' kHz
- Exposure time: microsecond
- Detector dynamic range: low
- S/N: low



- X-ray energy: high-energy mono beam
- Detector: large direct detection
- Frame rate: 100s Hz
- Exposure time: millisecond
- Detector dynamic range: high
- S/N: high

Slow, but high resolution





Lecture: 9:45 – 10:45 (Jul. 19, 2022)

Fast x-ray imaging and diffraction for engineering materials science - Tao Sun <u>https://forms.office.com/g/X8Esg0WPvJ</u>



