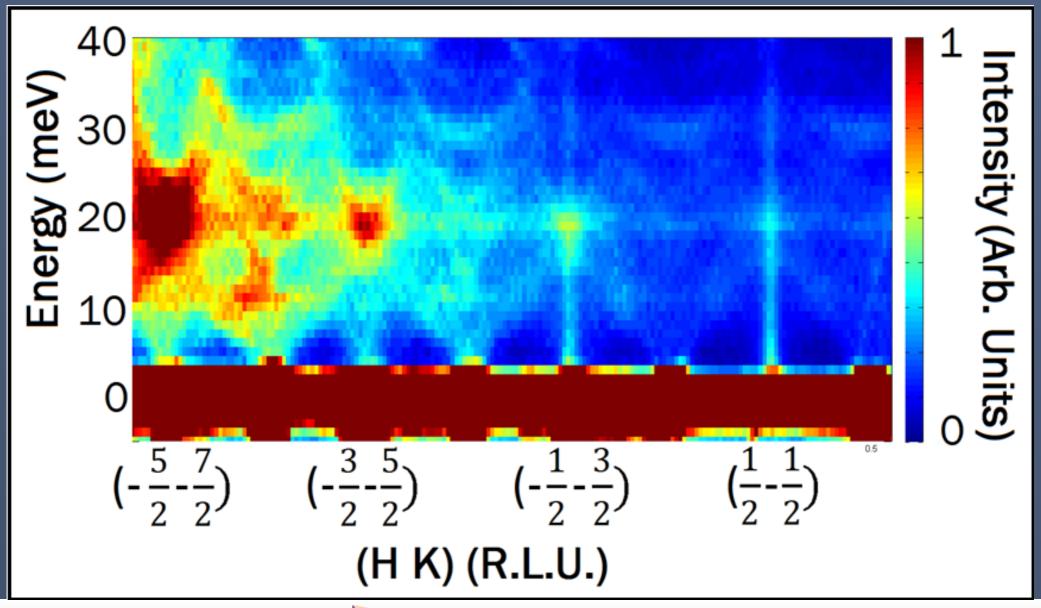
A Survey of Inelastic Neutron Scattering

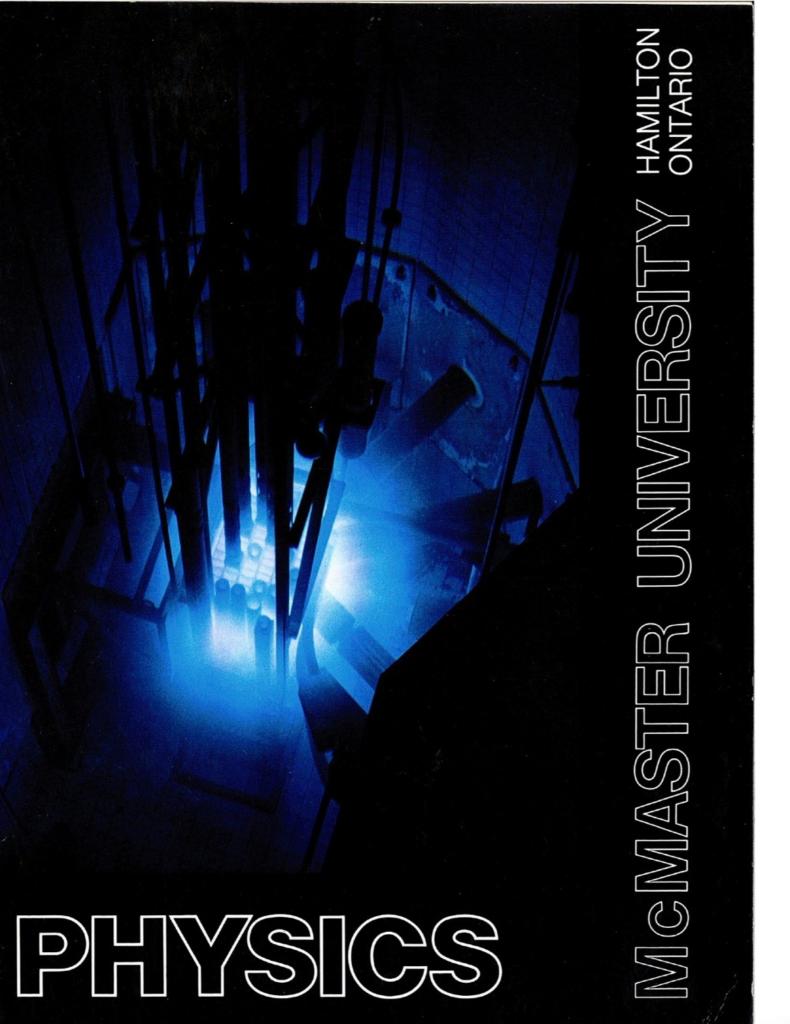
- Properties of the neutron
- The neutron scattering cross section
- The triple axis spectrometer

- Phonons
- Time-of-flight spectrometry
- Experimental details



Bruce D. Gaulin McMaster University

Brockhouse Institute for **Materials Research**



Neutrons:

no charge spin = 1/2 massive: mc²~IGeV

235U + n

daughter nuclei
+
2-3 n + \gamma s

The Neutron as a Wave

Energy, wave vector, wavelength, velocity:

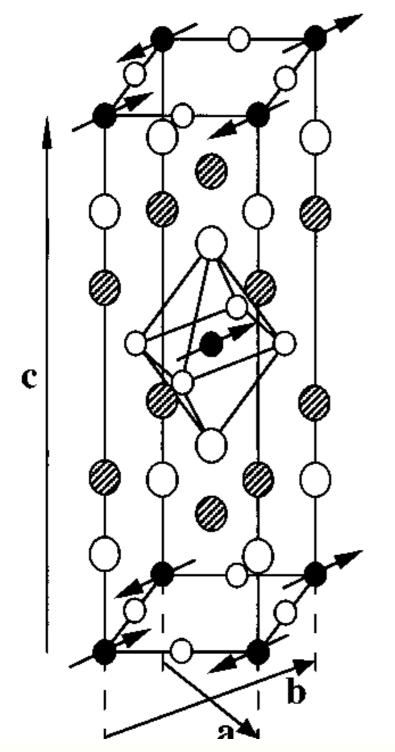
$$k = \frac{m_n v}{\hbar} = \frac{2\pi}{\lambda}$$

$$E = k_B T = 0.08617 mev \cdot K^{-1} \times T$$

$$E = \frac{\hbar^2 k^2}{2m_n} = \frac{\hbar^2}{2m_n} (\frac{2\pi}{\lambda})^2 = \frac{81.81 \, mev \cdot \mathring{A}^2}{\lambda^2}$$

Neutrons with λ typical of interatomic spacings (~ 2 Å) have energies typical of elementary excitations in solids (~ 20 meV)

What are we typically trying to understand?



 $\underline{La_{2}CuO_{4}}$

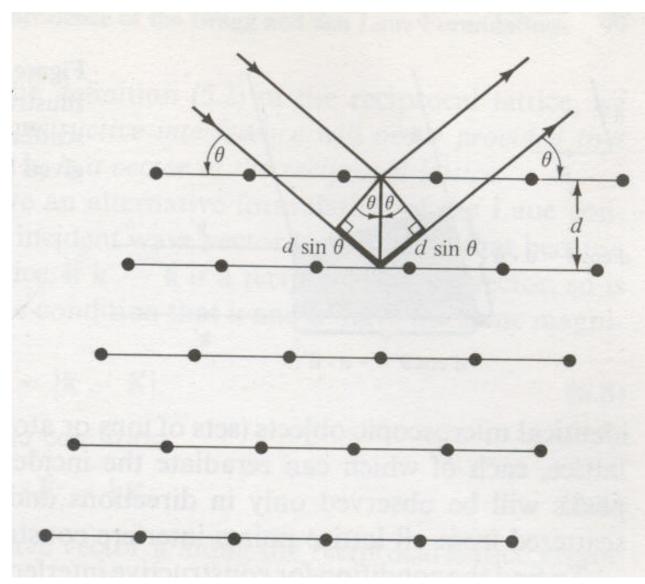
• Cu ²⁺

 $O O^{2-}$

 $O = O^{2-}$

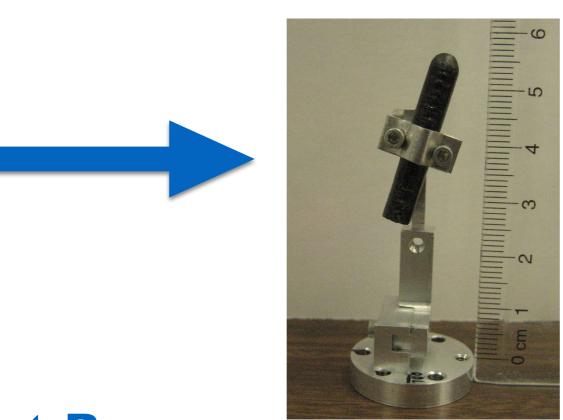
La 3+

Bragg's law: $n\lambda = 2d \sin(\theta)$



- What is the atomic and magnetic structure of new materials?
- What are the dynamic properties of the atoms and the magnetic moments?
- How are structure and dynamics related to physical properties?

The Basic Neutron Scattering Experiment



Incident Beam

Scattered Beam

- Monochomatic
- "White"
- "Pink"

- Resolve its energy
- Don't resolve its energy
- Filter its energy

Fermi's Golden Rule within the 1st Born approximation

$$W = \frac{2\pi}{\hbar} |\langle f|V|i\rangle|^2 \rho(E_f)$$

$$\partial \sigma = \frac{W}{\Phi} = \frac{m}{(2\pi\hbar^2)^2} \frac{k_f}{k_i} |\langle f|V|i\rangle|^2 \partial \Omega$$

$$\frac{\partial^2 \sigma}{\partial \Omega \partial E_f} = \frac{k_f}{k_i} \frac{\sigma_{coherent}}{4\pi} N S_{coherent} (\vec{Q}, \hbar \omega)$$

Correlation Functions

Pair correlation function

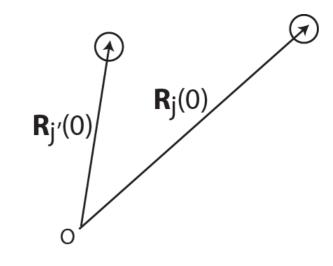
$$\vec{G}(\vec{r},t) = \frac{1}{N} \int \sum_{i,j'} \delta(\vec{r'} - R_{j'}(0)) \, \delta(\vec{r'} + \vec{r} - \vec{R}_{j}(t)) \, dr'$$

Intermediate function

$$I(\vec{Q},t) = \int \vec{G(r,t)} e^{i\vec{Q}\cdot\vec{r}} d\vec{r} = \frac{1}{N} \sum_{j,j'} e^{-i\vec{Q}\cdot\vec{R}_{j'}(0)} e^{i\vec{Q}\cdot\vec{R}_{j}(t)}$$

Scattering function

$$S(\vec{Q},\hbar\omega) = \frac{1}{2\pi\hbar} \int I(\vec{Q},t) e^{-i\omega t} dt$$



Correlation Functions

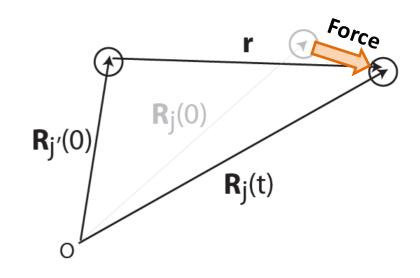
Pair correlation function

$$\vec{G}(\vec{r},t) = \frac{1}{N} \int \sum_{j,j'} \delta(\vec{r'} - R_{j'}(0)) \, \delta(\vec{r'} + \vec{r} - \vec{R}_{j}(t)) \, dr'$$

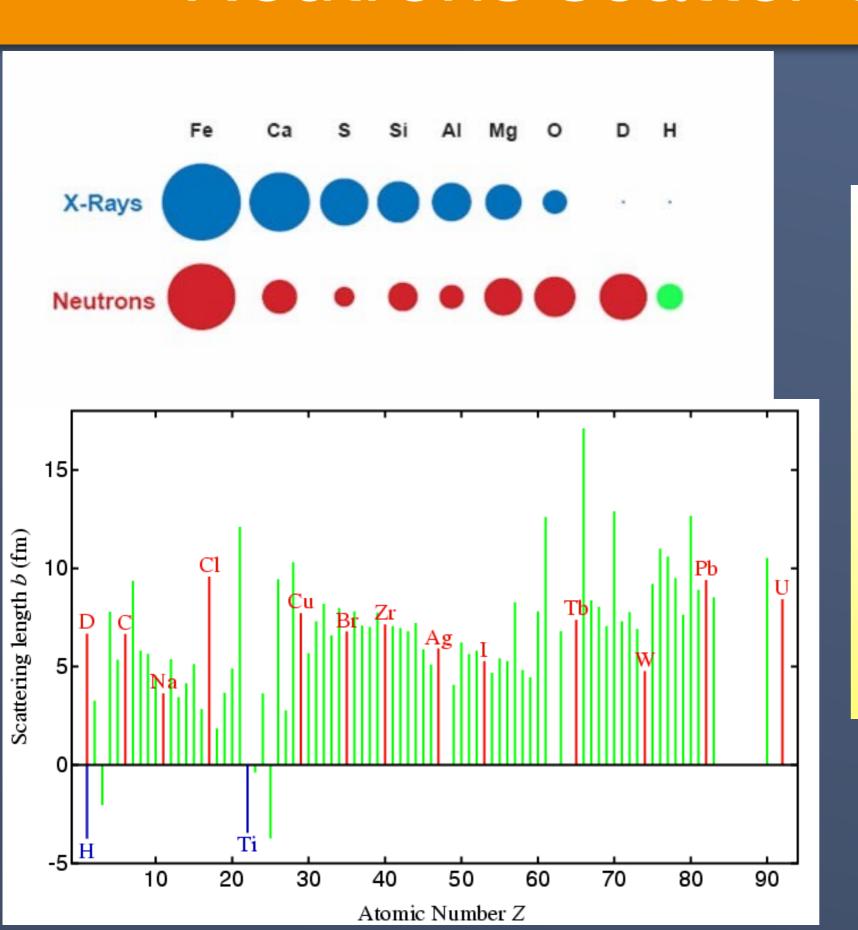
Intermediate function

$$I(\vec{Q},t) = \int G(\vec{r},t) e^{i\vec{Q}\cdot\vec{r}} d\vec{r} = \frac{1}{N} \sum_{j,j'} e^{-i\vec{Q}\cdot\vec{R}_{j'}(0)} e^{i\vec{Q}\cdot\vec{R}_{j}(t)}$$

Scattering function
$$S(\vec{Q},\hbar\omega) = \frac{1}{2\pi\hbar} \int I(\vec{Q},t) \, e^{-i\omega t} dt$$



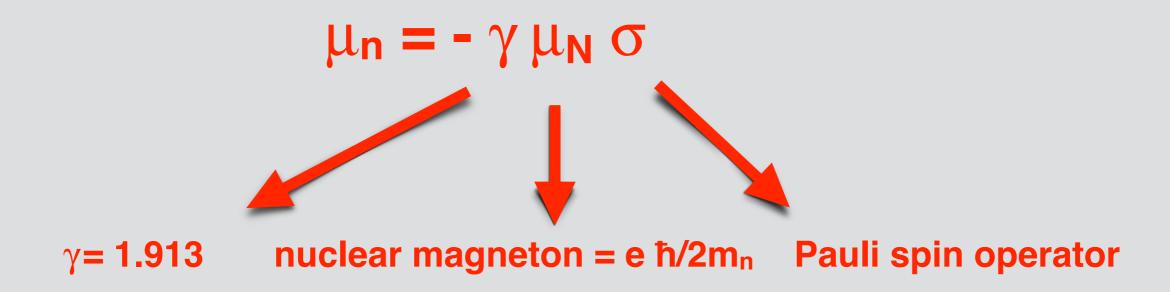
Neutrons scatter off nuclei

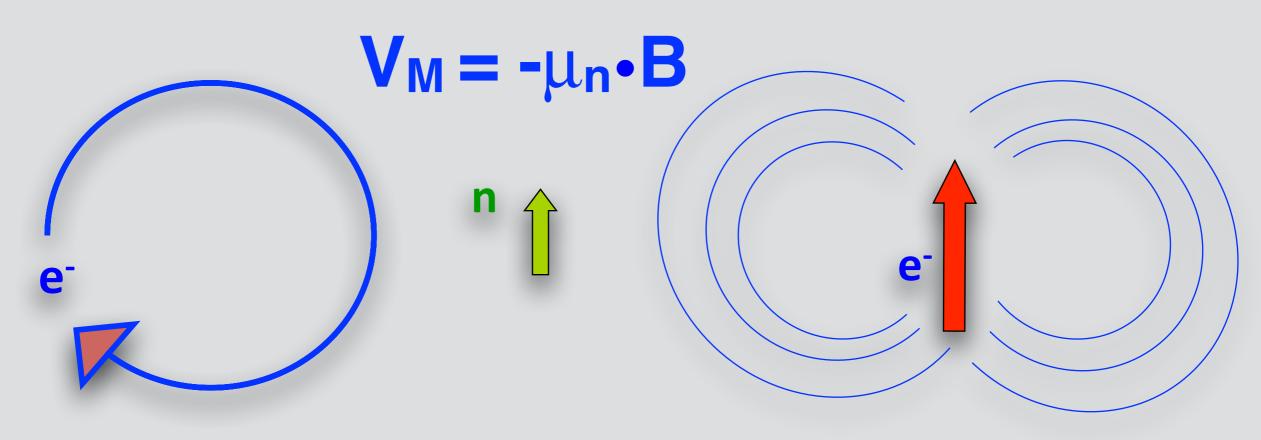


Neutrons "see" nuclei and magnetism

X-rays electromagnetic
radiation
"see" electrons

Dipole moment of the neutron interacts with the magnetic field generated by the electron

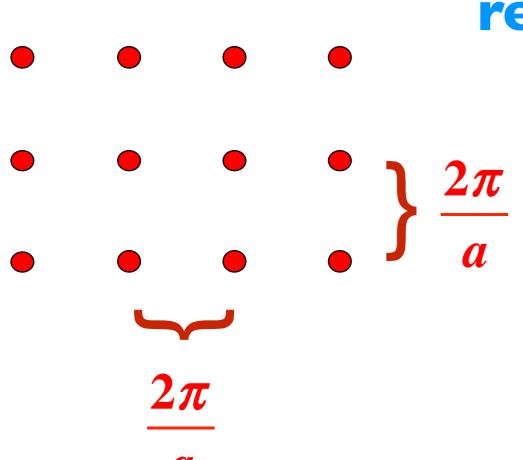


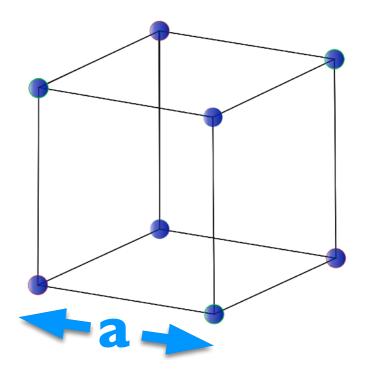


Dipole field due to orbital currents

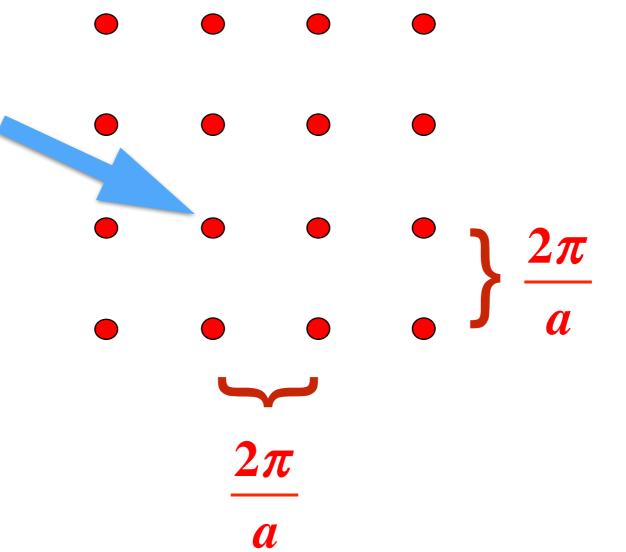
Dipole field due to Spin of the electron(s)

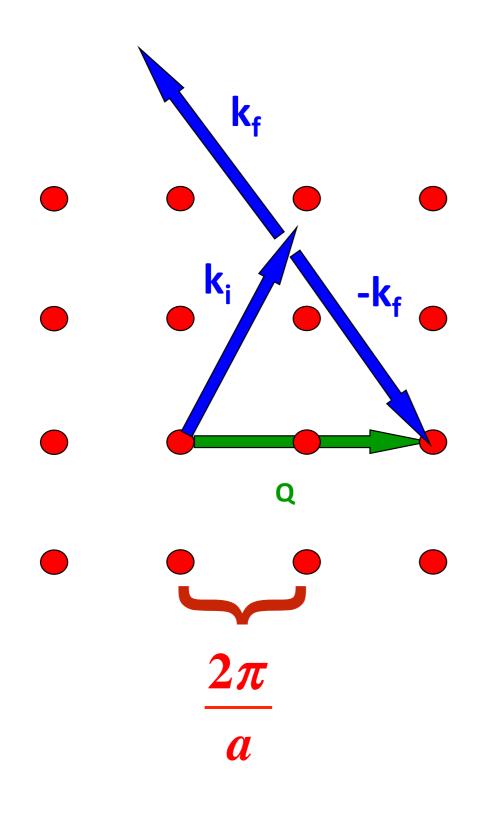
In momentum space,
our sample is
represented
by its
reciprocal lattice





Remains fixed for all sample orientations



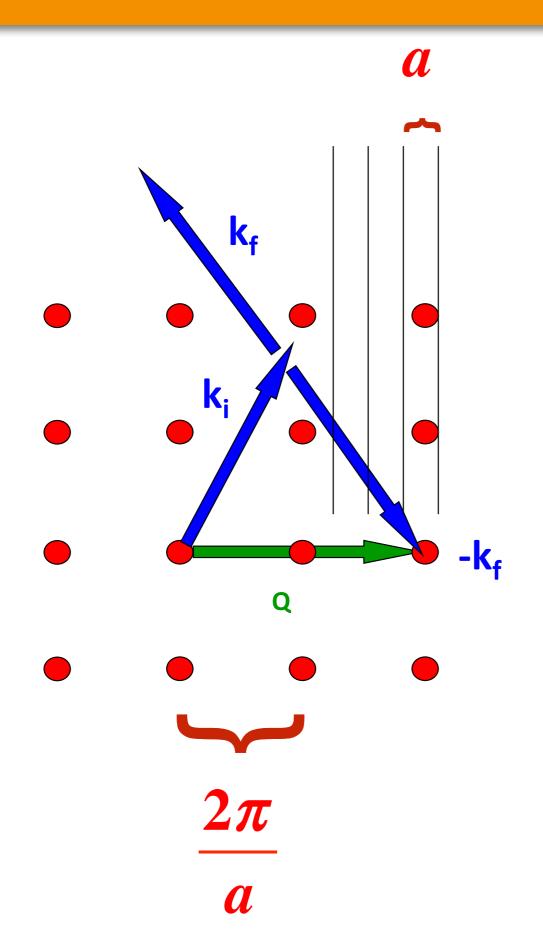


Bragg diffraction

constructive interference when

$$\vec{Q} = \vec{k}_i - \vec{k}_f = \vec{\tau}$$

= a reciprocal lattice vector



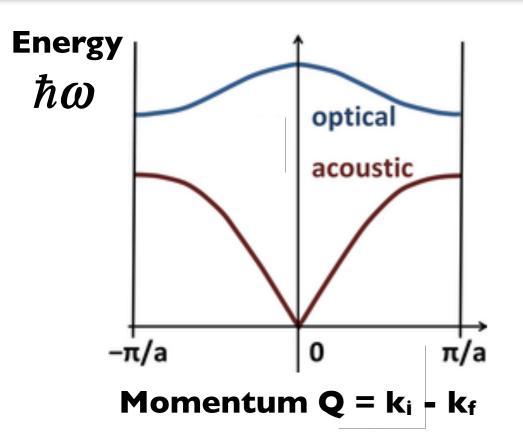
Bragg diffraction

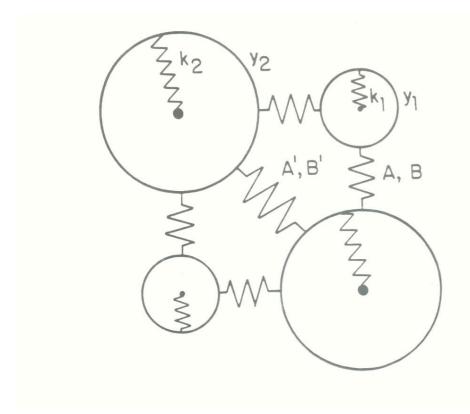
constructive interference when

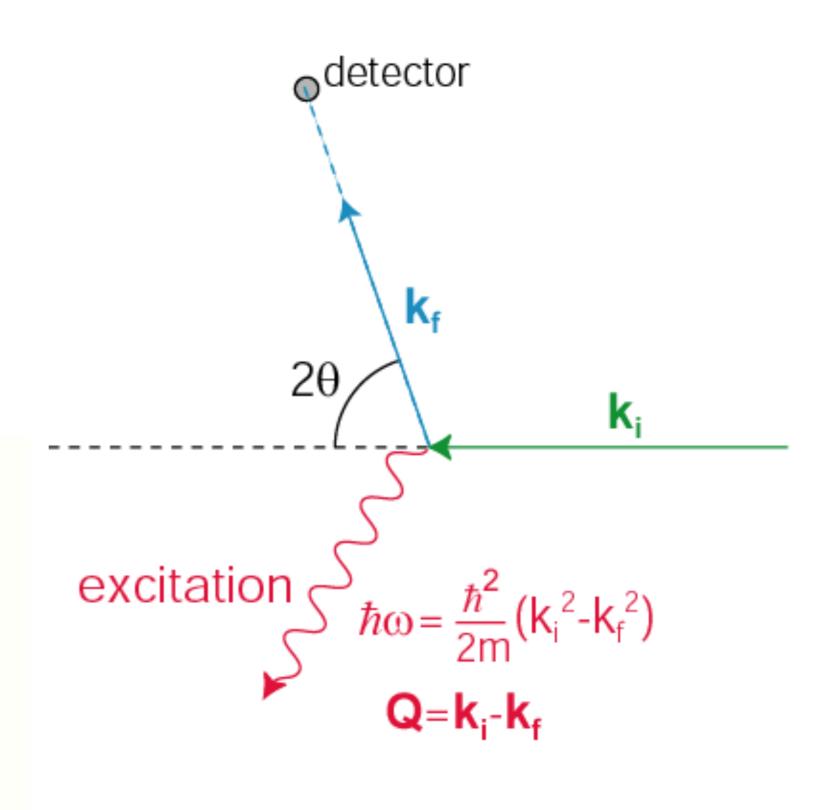
$$\vec{Q} = \vec{k}_i - \vec{k}_f = \vec{\tau}$$

= a reciprocal lattice vector

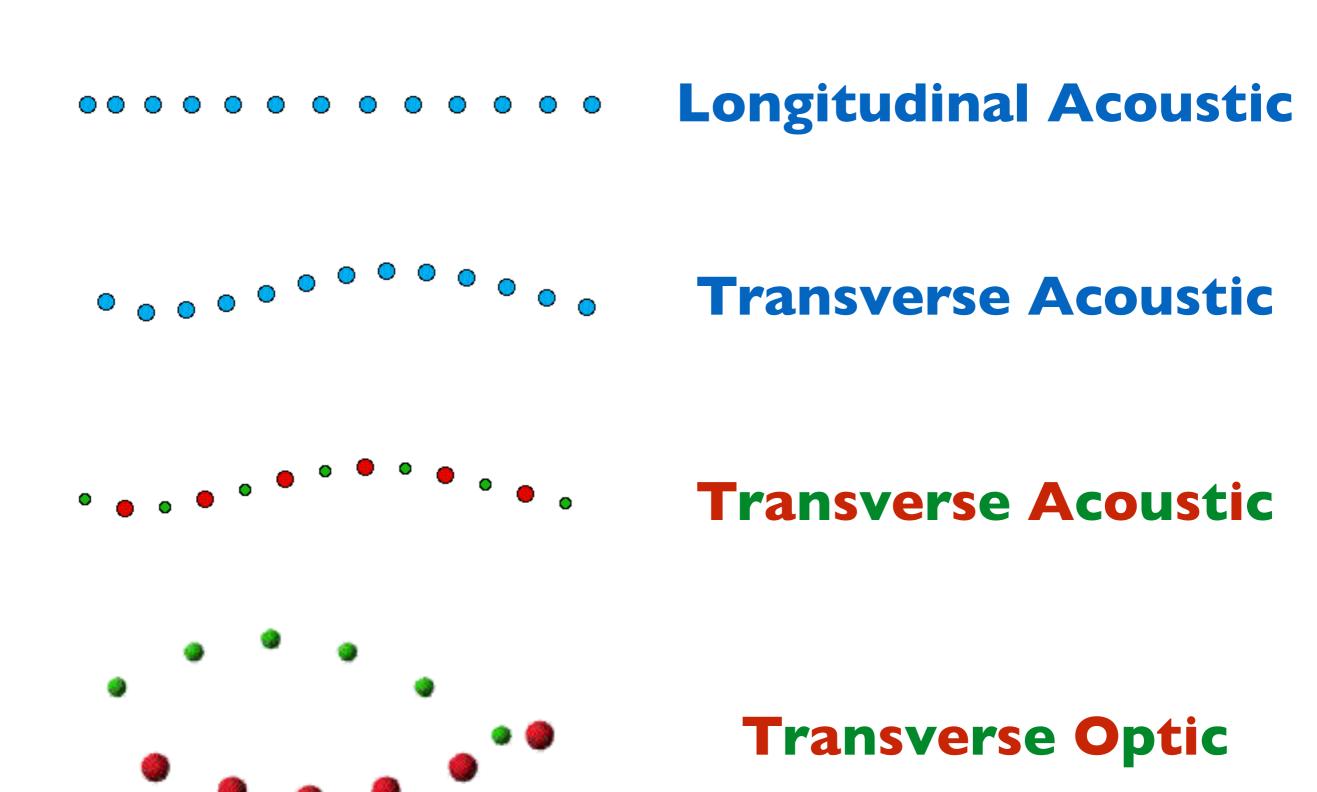
Elementary Excitations



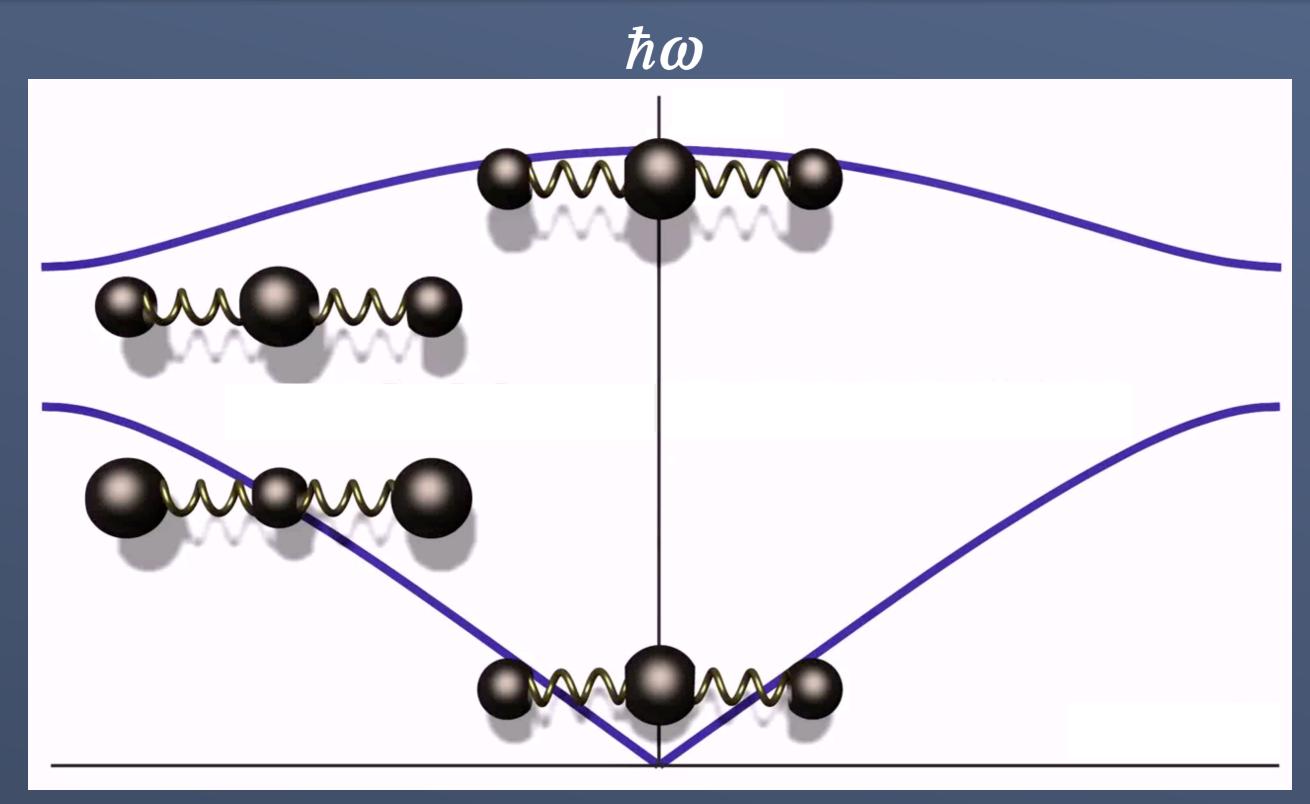




Phonon Polarizations

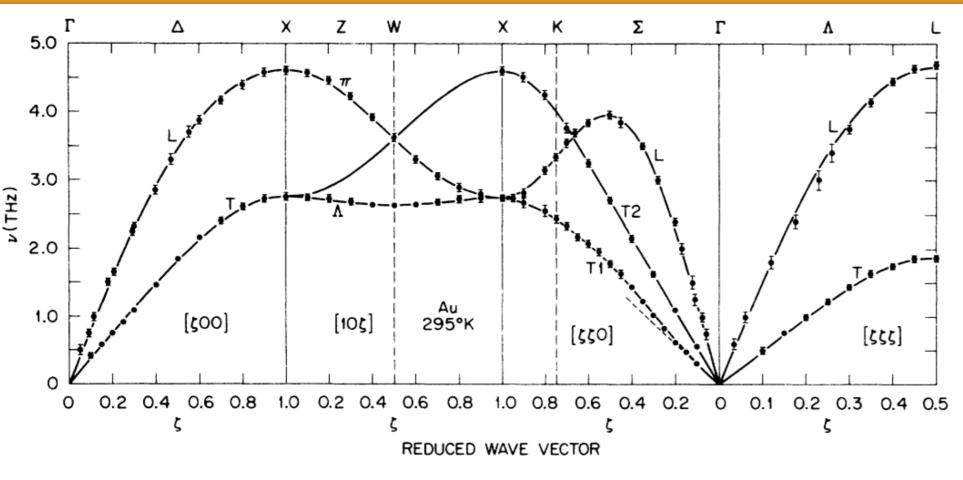


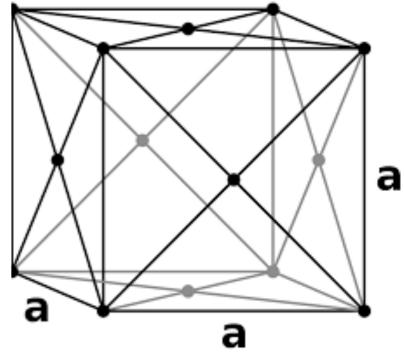
Phonon eigenvectors and eigenvalues



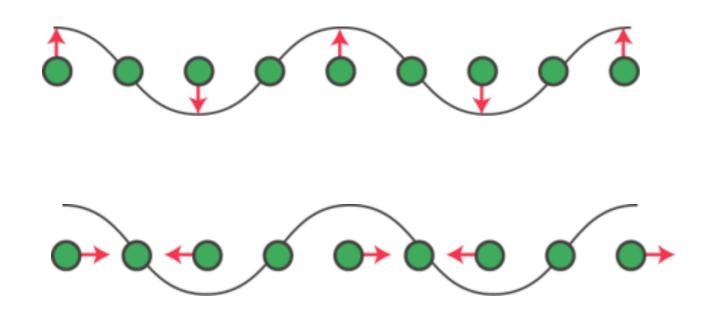
Momentum $Q = k_i - k_f$

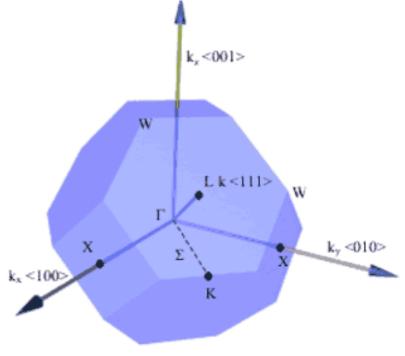
Phonons in 3D





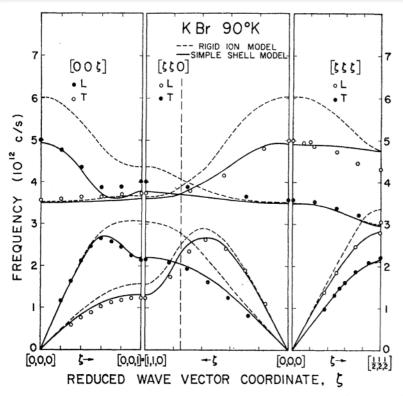
Lynn, et al., Phys. Rev. B 8, 3493 (1973).



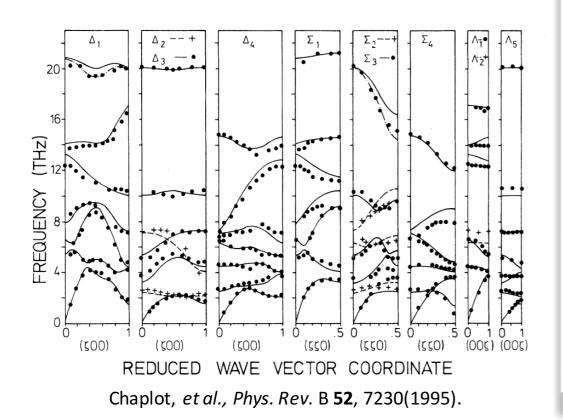


FCC Brillouin zone

Phonons in more complicated 3D structures



Woods, et al., Phys. Rev. 131, 1025 (1963).

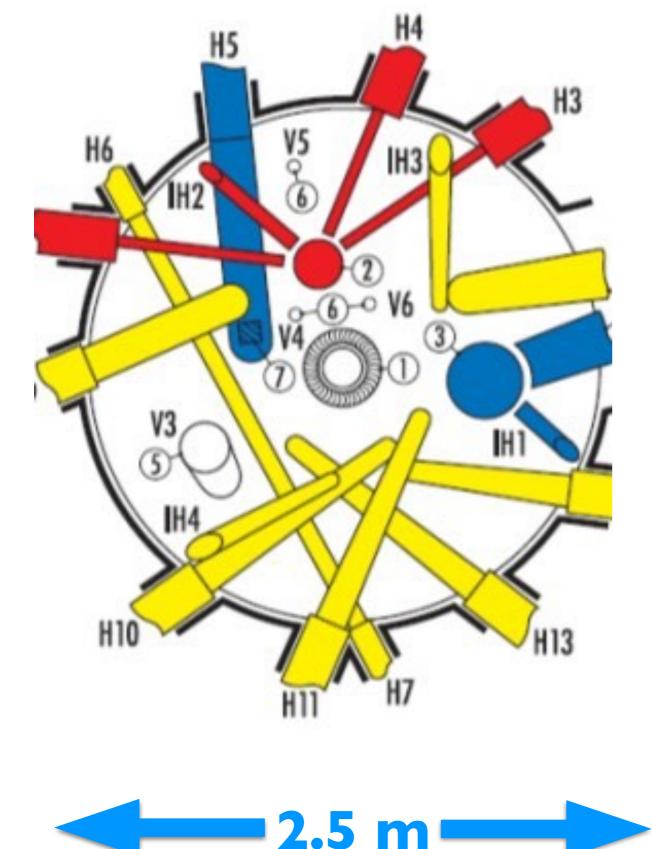


KBr - two atoms/unit cell

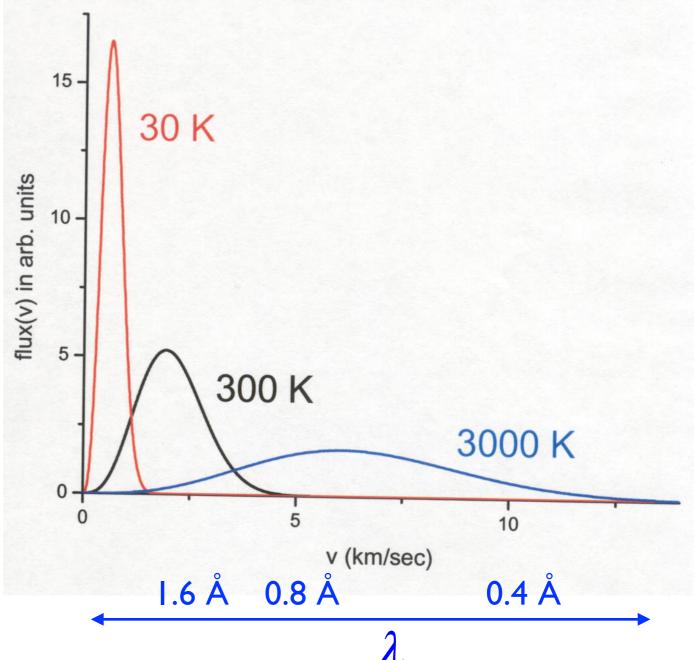
3 acoustic phonon branches 3 optic phonon branches

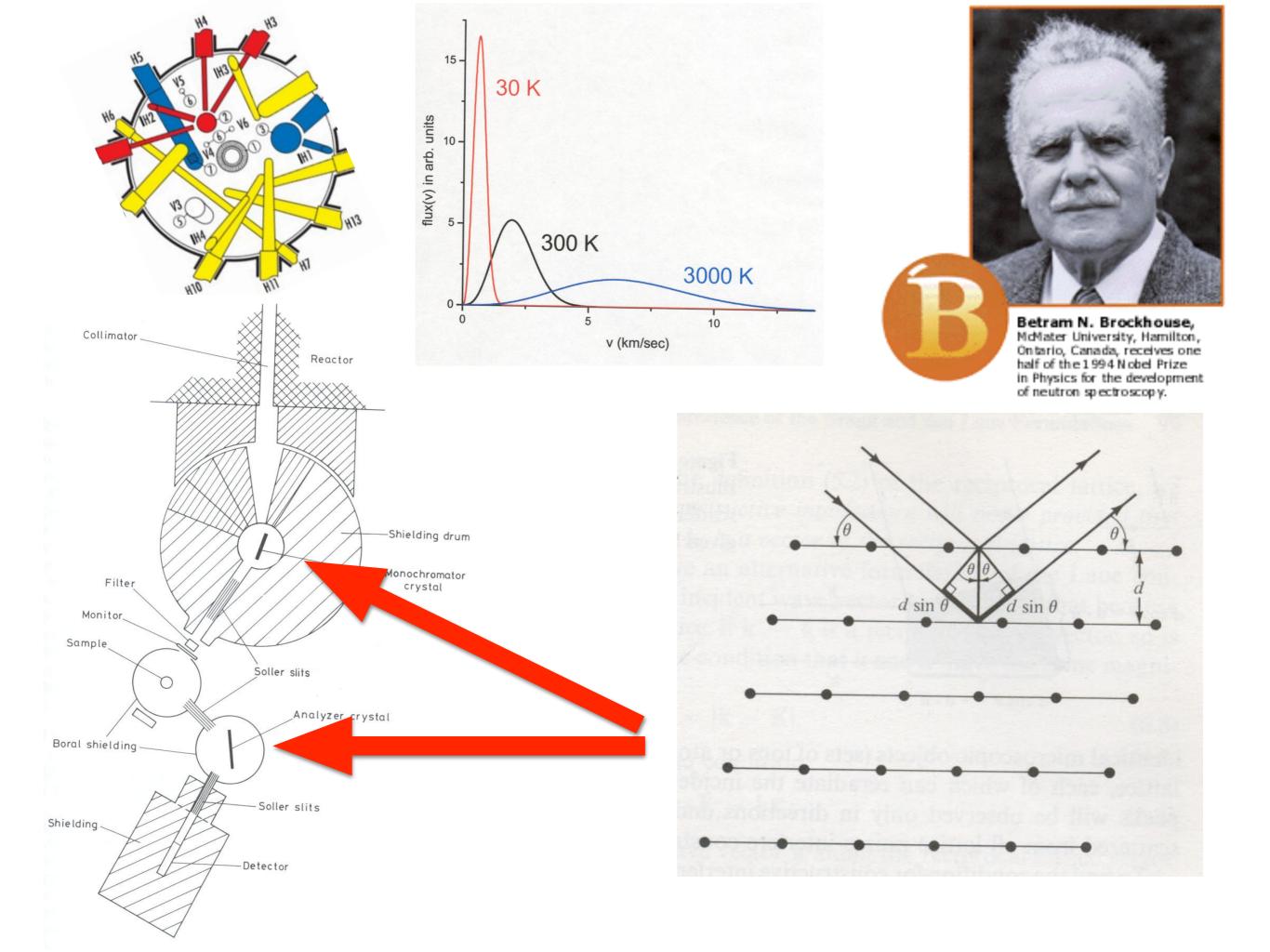
La₂CuO₄ many atoms/unit cell

3 acoustic phonon branches 3n-3 = many optic phonon branches

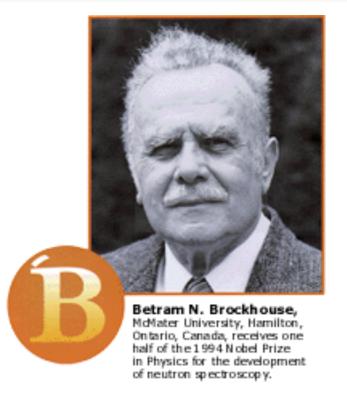


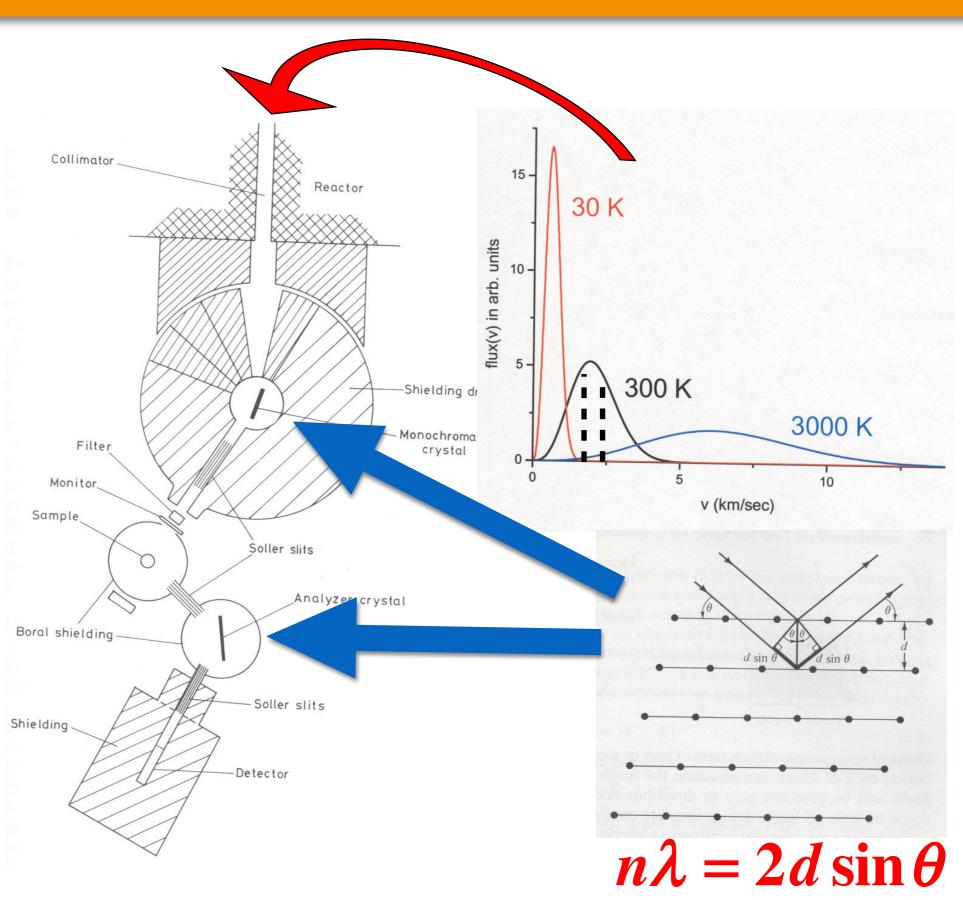
The High Flux Reactor at the ILL and its moderators and beam ports



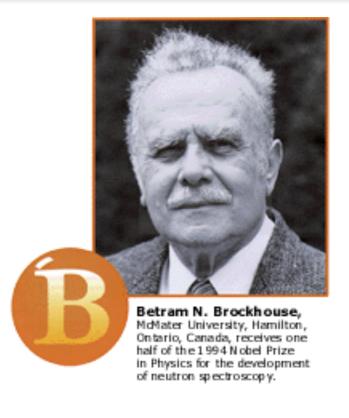


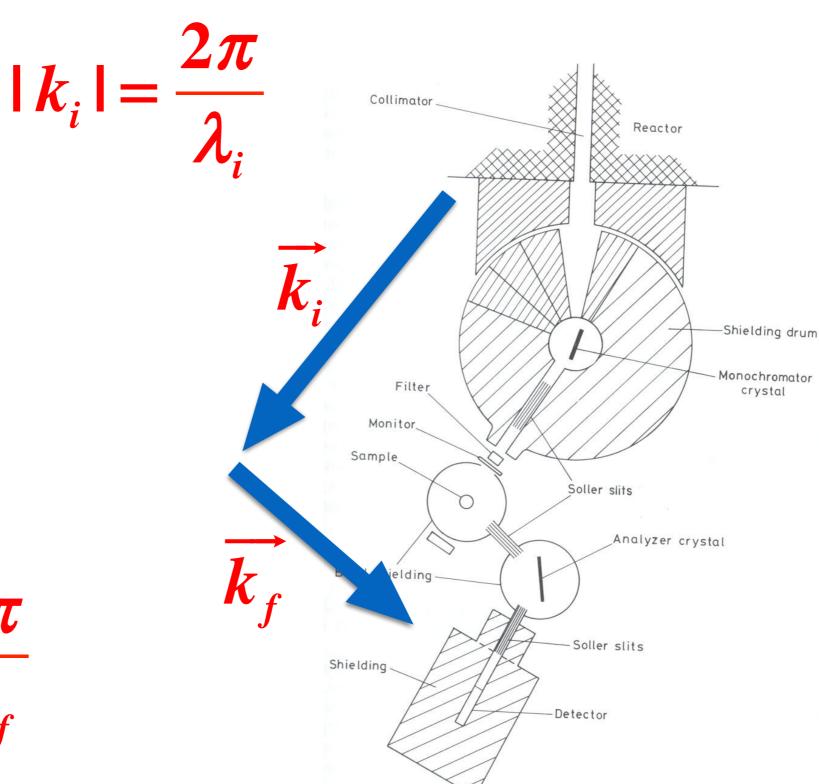
Brockhouse's Triple Axis Spectrometer





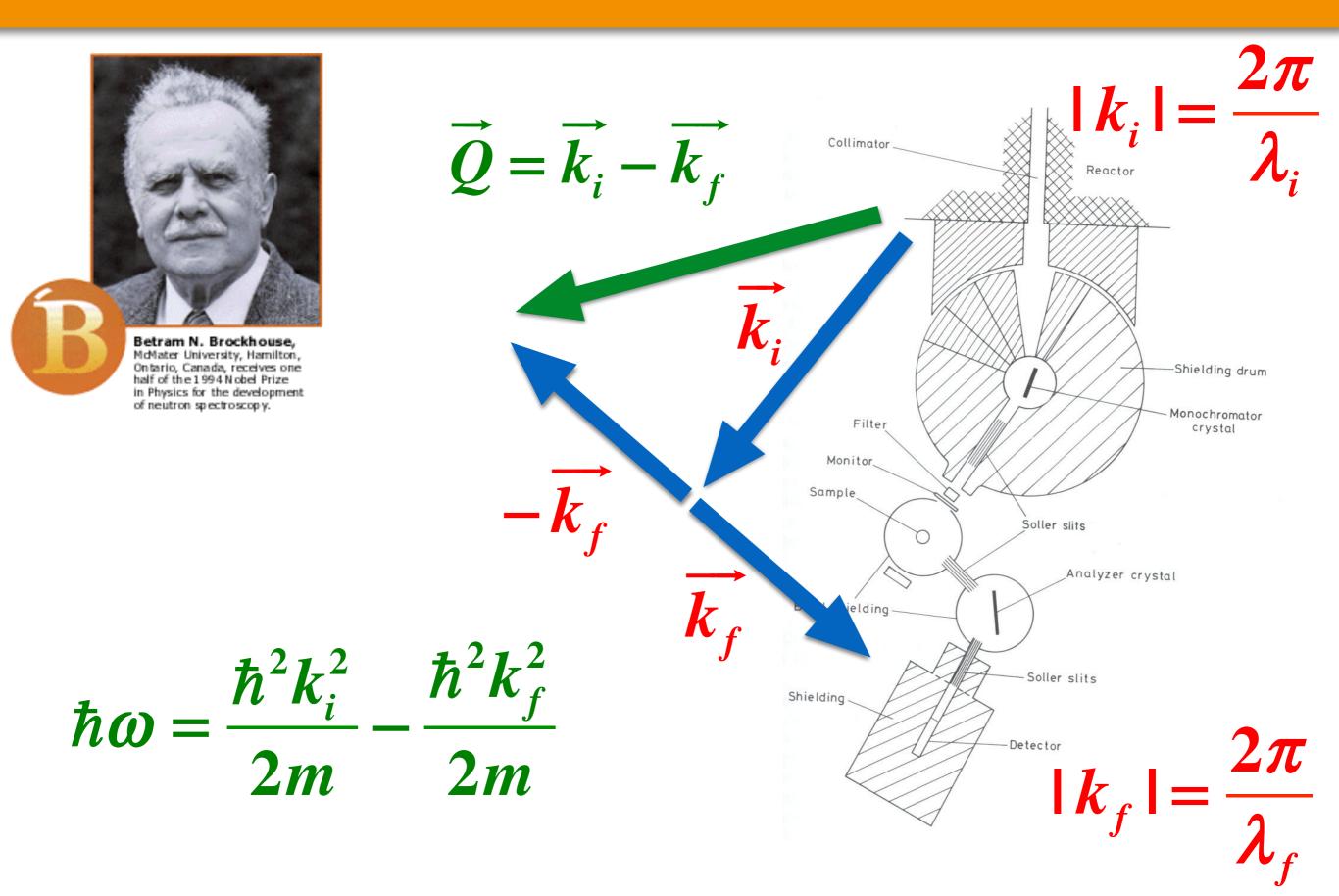
Brockhouse's Triple Axis Spectrometer





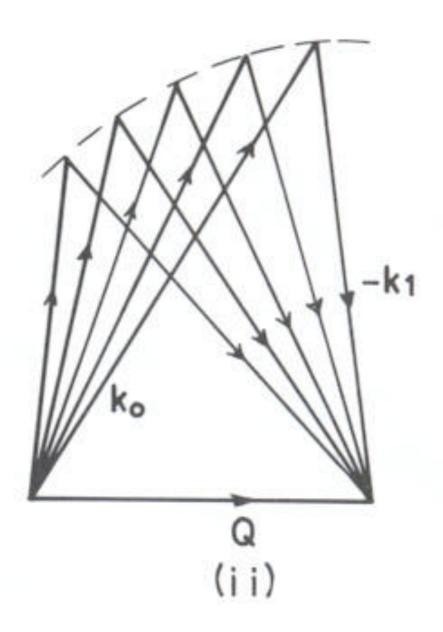
$$|k_f| = \frac{2\pi}{\lambda_f}$$

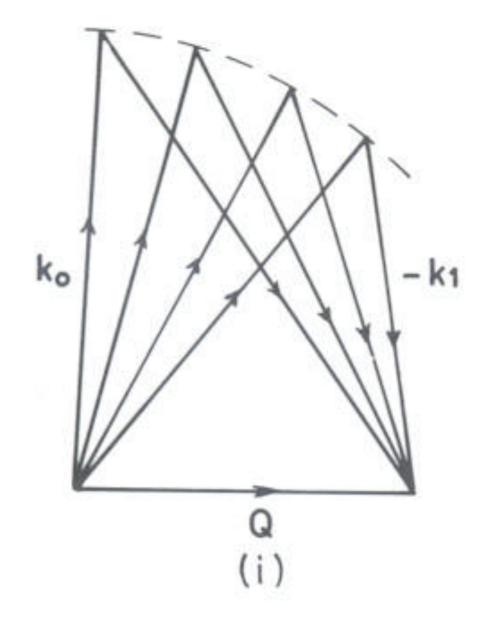
Brockhouse's Triple Axis Spectrometer



Two different ways of performing constant-Q scans

$$Q = k_i - k_f$$

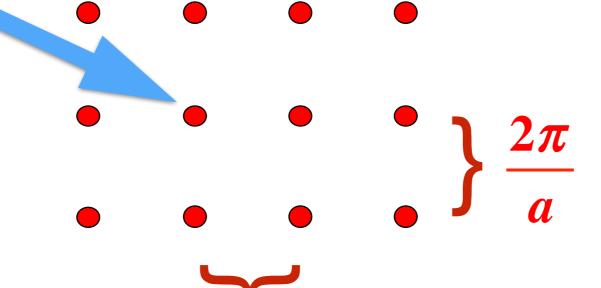




 $Q = Constant k_f$

 $Q = Constant k_i$

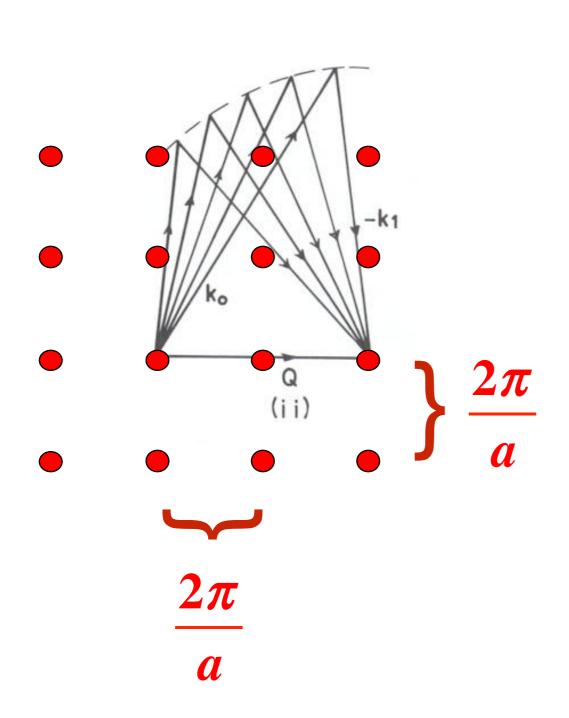
Mapping Momentum (Q) and Energy ($\hbar\omega$) space

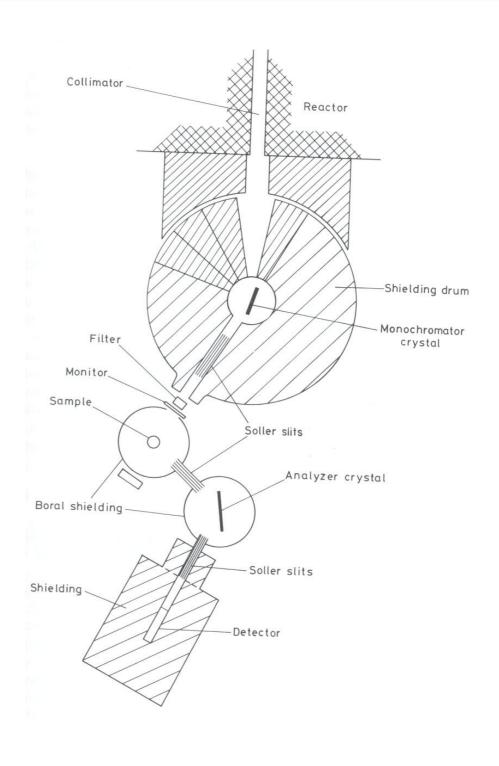


Remains fixed for all sample orientations

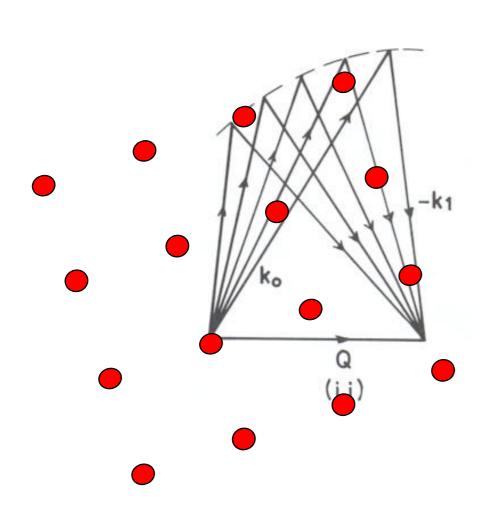
$$\frac{2\pi}{a}$$

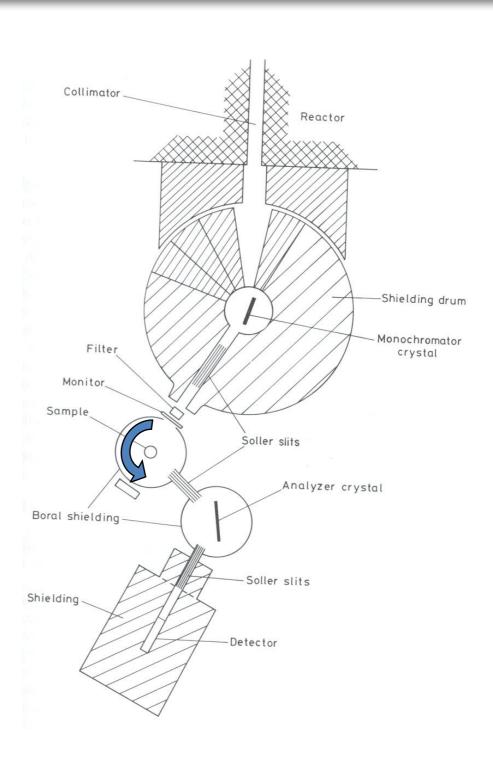
Putting the Q-map of the scattering with the reciprocal lattice of the crystal



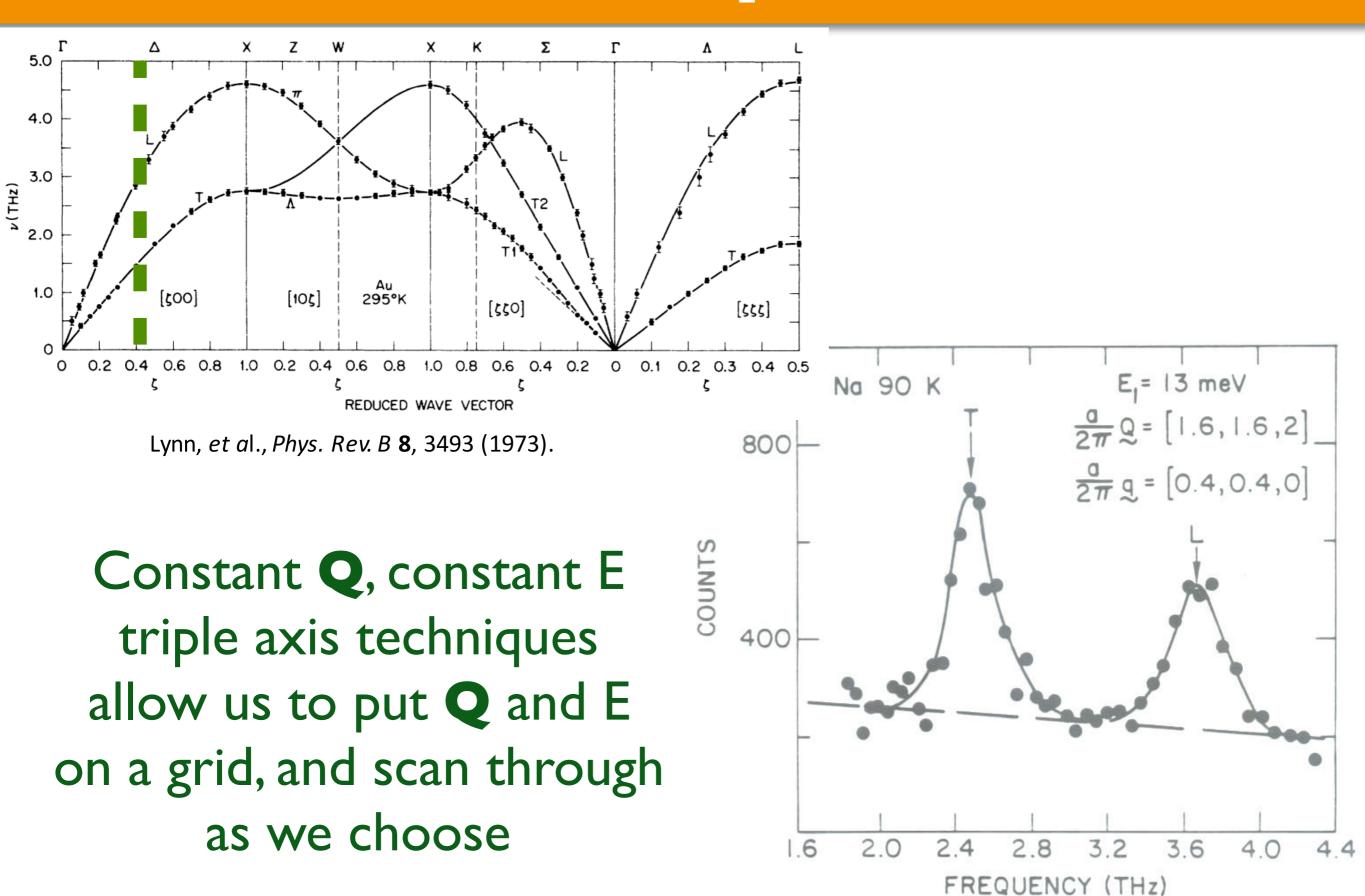


Putting the Q-map of the scattering with the reciprocal lattice of the crystal

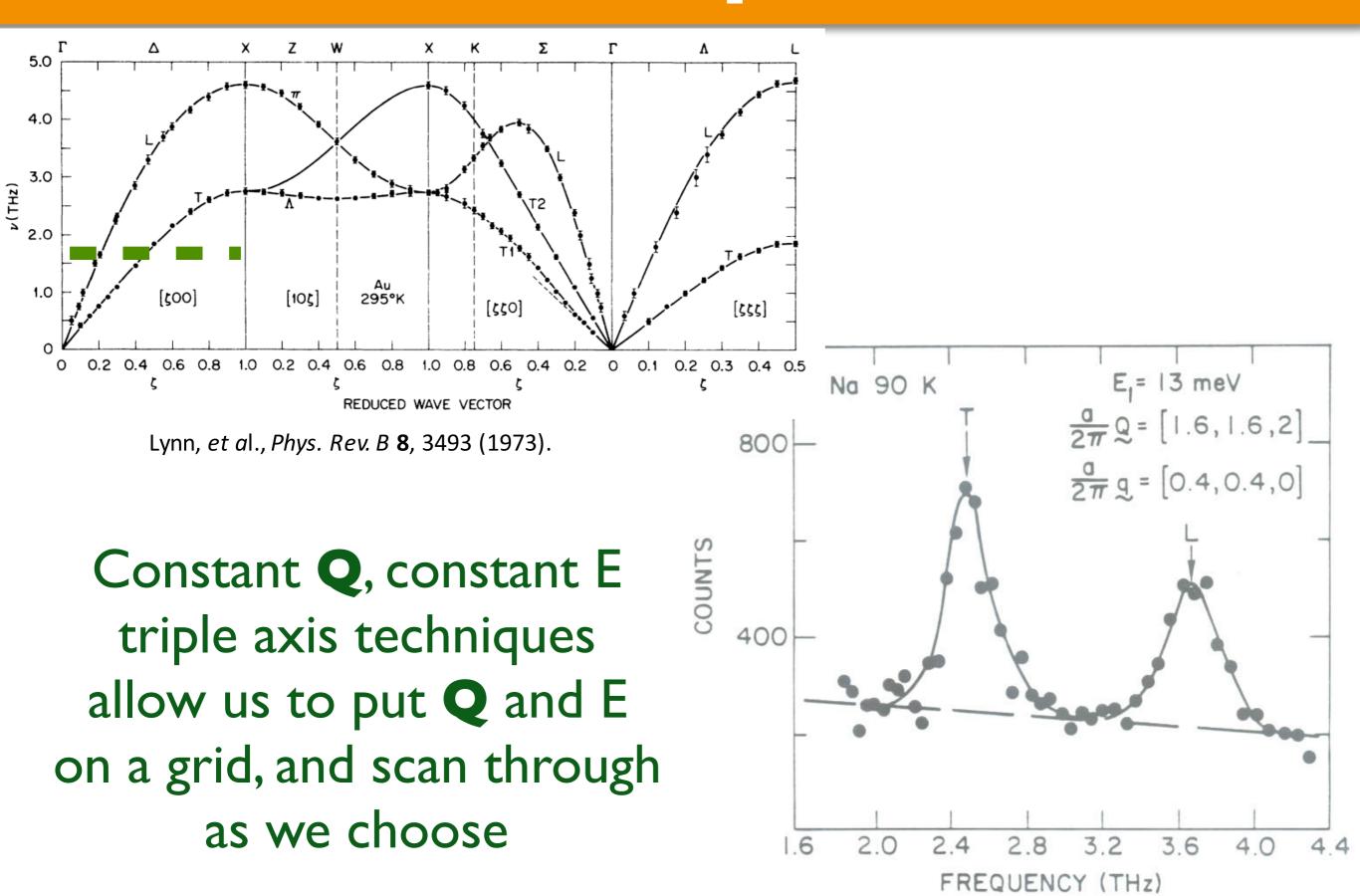




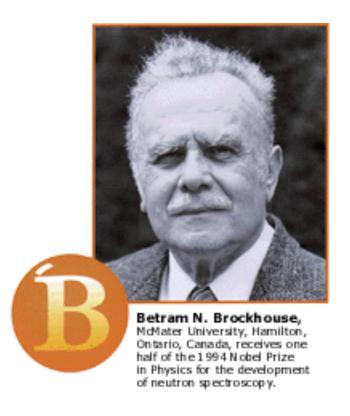
Constant-Q triple axis data



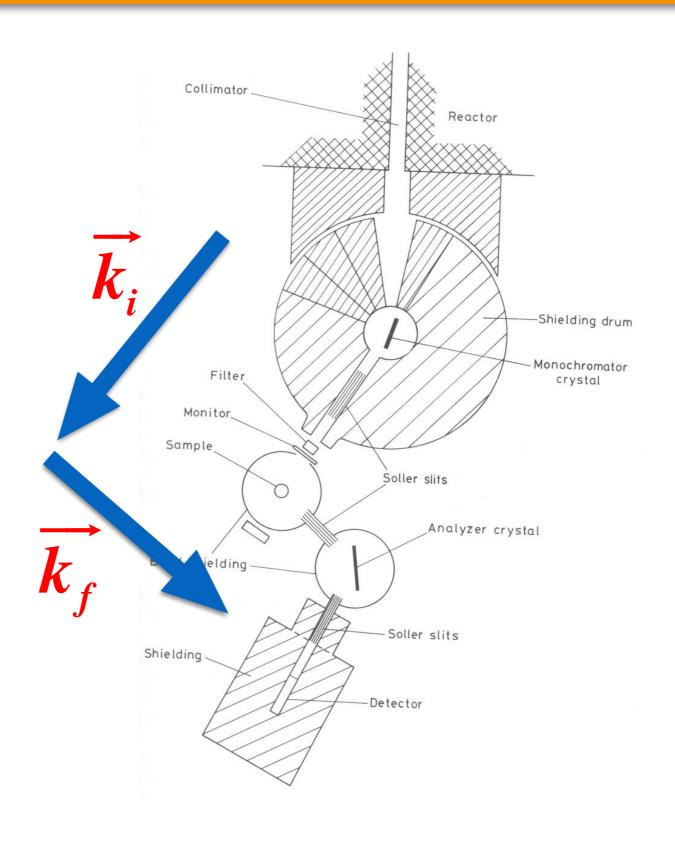
Constant-E triple axis data



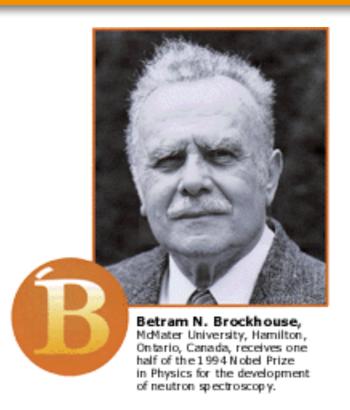
Elastic scattering with a Triple Axis Spectrometer



$$|k_f| = |k_i| = \frac{2\pi}{\lambda_i}$$

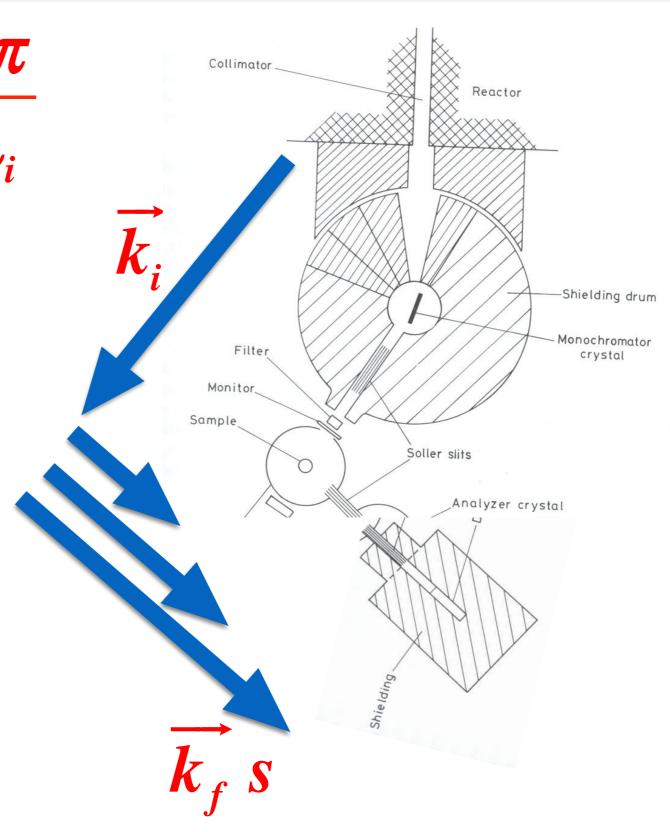


Two Axis "Spectrometer" integrates over k_f: diffraction



$$|k_i| = \frac{2\pi}{\lambda_i}$$

The assumption is often made that the scattering is elastic - but, this is an assumption!



The coherent neutron scattering cross section for phonons

$$S(\vec{Q},\hbar\omega) = \frac{1}{2NM} e^{-Q^2 \langle u^2 \rangle} \sum_{j,\vec{q}} |\vec{Q} \cdot \vec{\varepsilon}_j(\vec{q})|^2 \frac{1}{\omega_j(\vec{q})}$$

The displacement (eigenvectors) of the atoms must be // to the momentum transfer

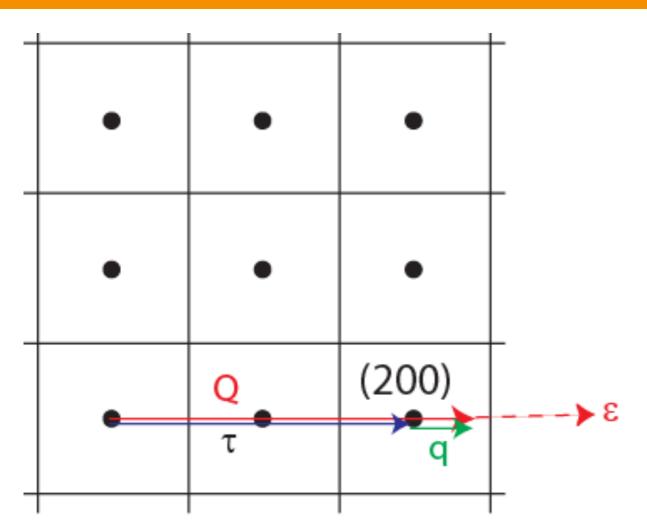
$$\times (1 + n(\hbar\omega)) \delta(\vec{Q} - \vec{q} - \vec{\tau}) \delta(\hbar\omega - \hbar\omega_j(\vec{q}))$$

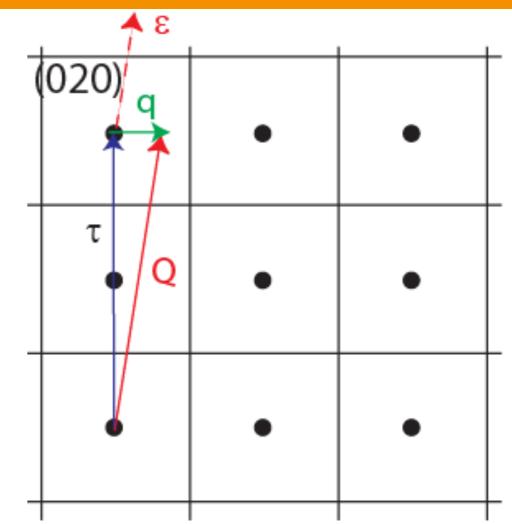
The neutron can always create a phonon, but it cannot destroy a phonon unless one is already present

Momentum must be conserved

Energy must be conserved

The coherent neutron scattering cross section for phonons





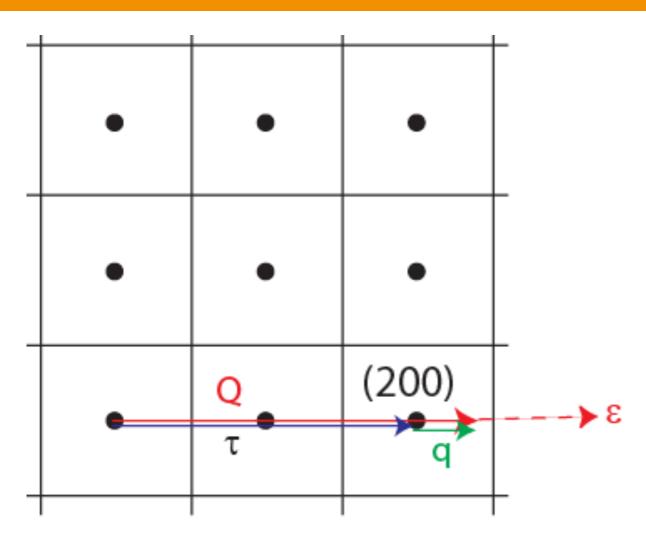
Longitudinal scan, q || ε

Transverse scan, $\mathbf{q} \perp \epsilon$

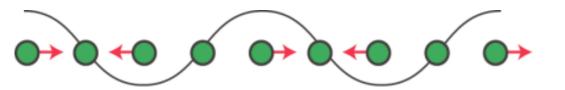
$$S(\vec{Q},\hbar\omega) = \frac{1}{2NM} e^{-Q^2 \langle u^2 \rangle} \sum_{j,\vec{q}} |\vec{Q} \cdot \vec{\varepsilon}_j(\vec{q})|^2 \frac{1}{\omega_j(\vec{q})}$$

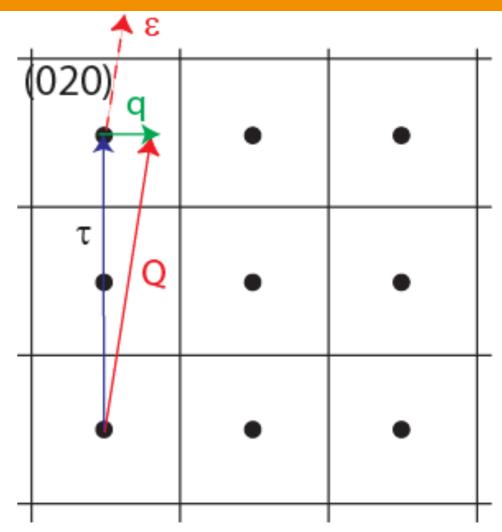
$$\times (1 + n(\hbar\omega)) \ \delta(\vec{Q} - \vec{q} - \vec{\tau}) \ \delta(\hbar\omega - \hbar\omega_j(\vec{q}))$$

The coherent neutron scattering cross section for phonons

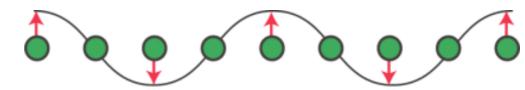


Longitudinal scan, q || ε





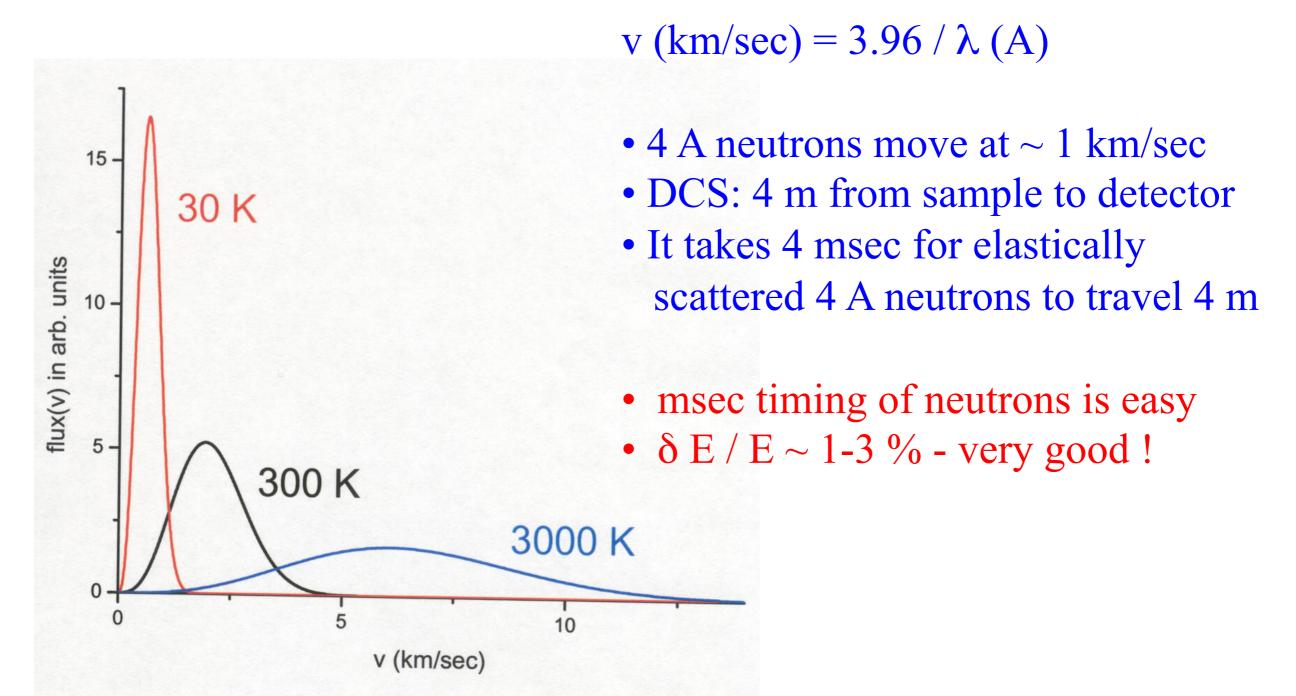
Transverse scan, $\mathbf{q} \perp \epsilon$



$$S(\vec{Q},\hbar\omega) = \frac{1}{2NM} e^{-Q^2 \langle u^2 \rangle} \sum_{j,\vec{q}} |\vec{Q} \cdot \vec{\varepsilon}_j(\vec{q})|^2 \frac{1}{\omega_j(\vec{q})}$$

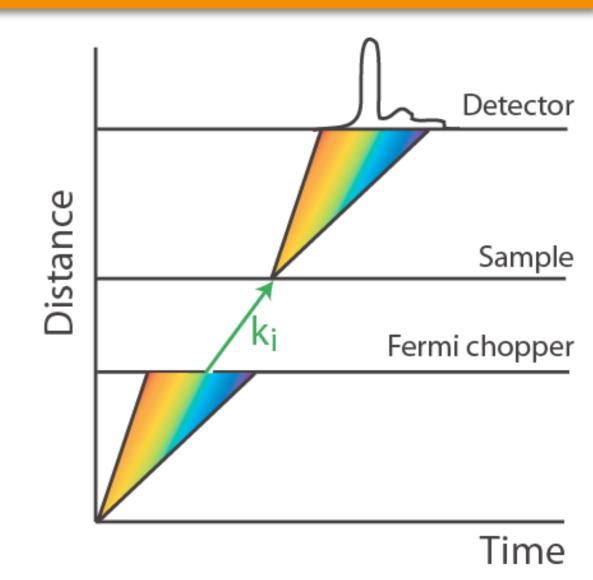
Time-of-flight Neutron Scattering

Neutrons have *mass* so higher energy means faster – lower energy means slower



We can measure a neutron's energy, wavelength by measuring its speed

Time-of-flight Neutron Scattering



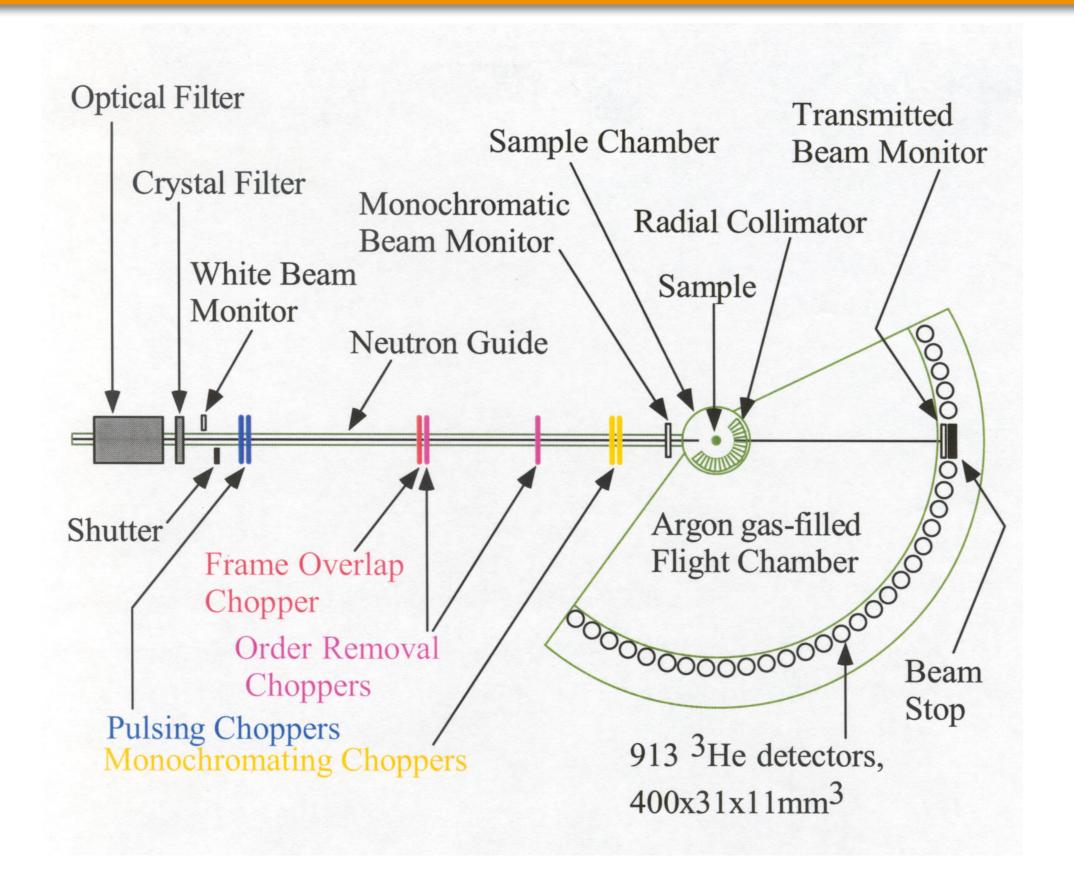
detector banks

velocity selector

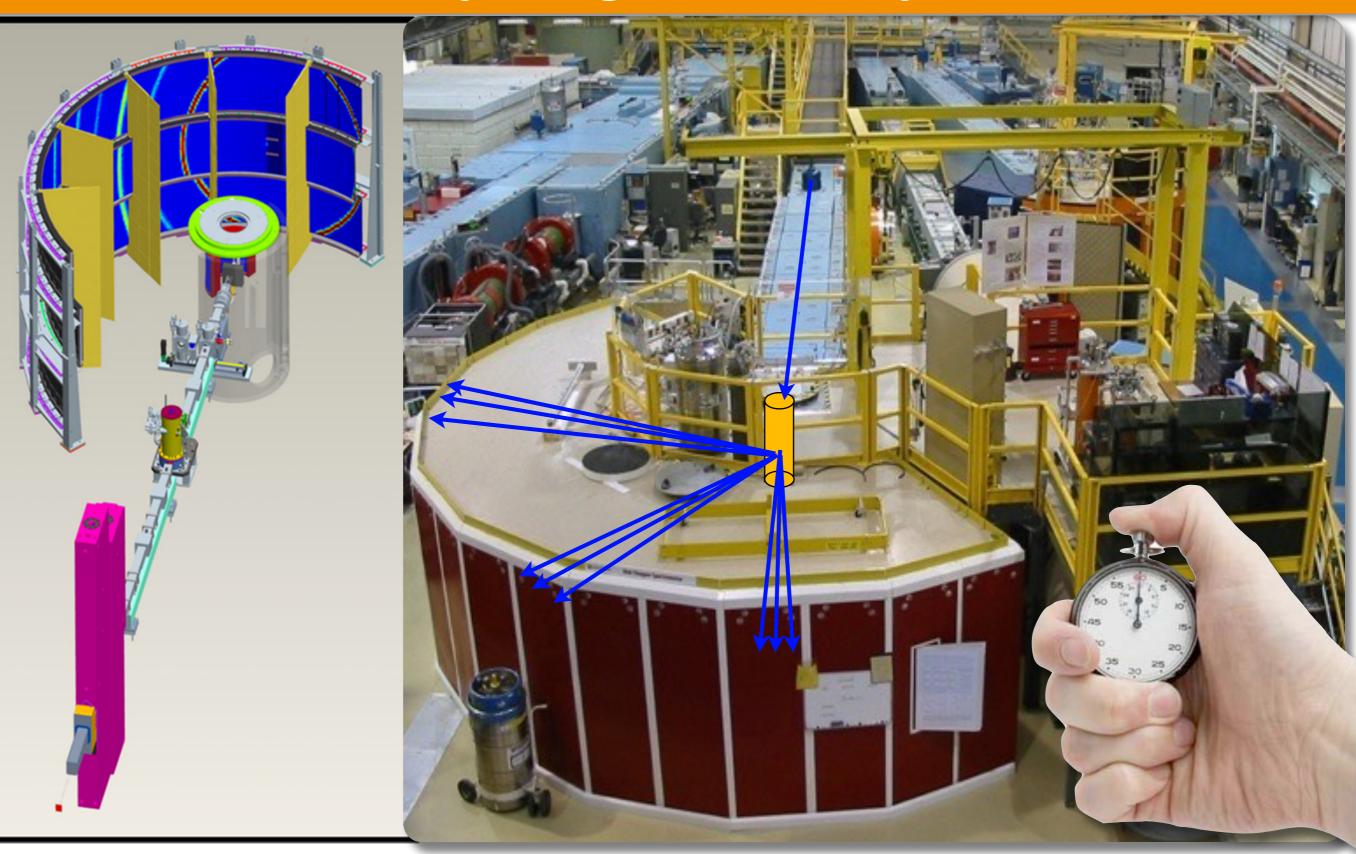
Scattered neutrons sample

$$t = \frac{d}{v} = (\frac{md}{h})\lambda$$

Time-of-flight Neutron Scattering



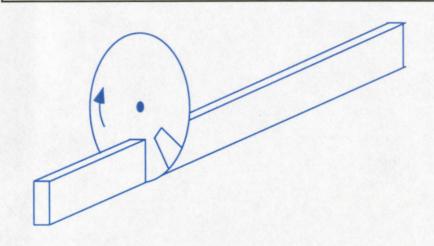
4D data sets for single crystals can be very large ~ 2 Tbyte



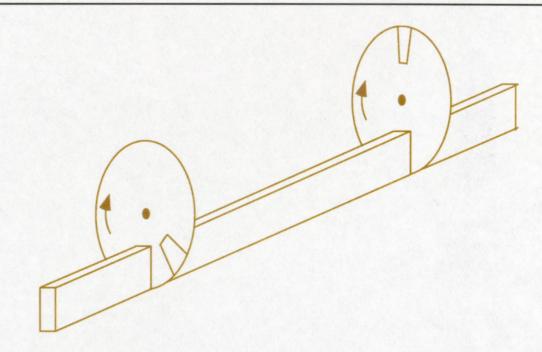
Time-of-flight Neutron Scattering: Disc Choppers

A single (disk) chopper pulses the neutron beam.

A second chopper selects neutrons within a narrow range of speeds.



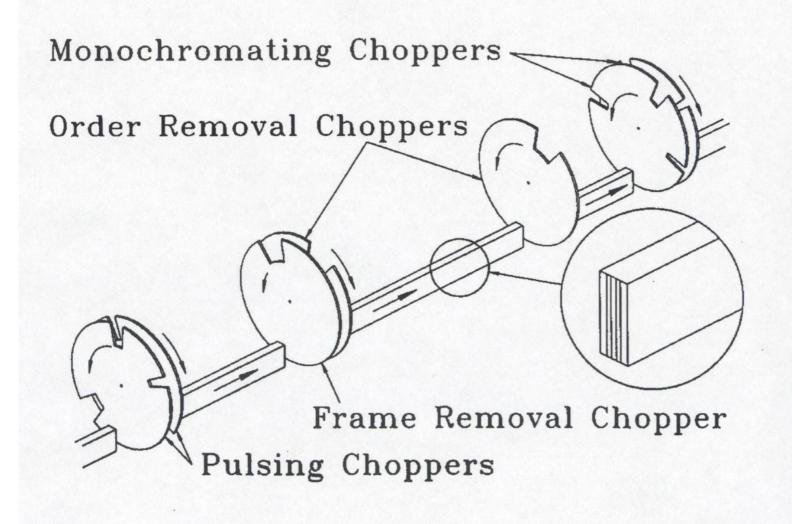
Counter-rotating choppers (close together), with speed *, behave like single choppers with speed 2*. They can also permit a choice of pulse widths.



Additional choppers remove "contaminant" wavelengths and reduce the pulse frequency at the sample position.

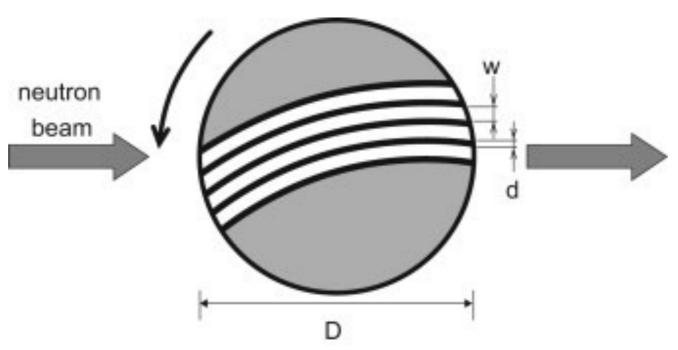
Time-of-flight Neutron Scattering: Disc Choppers

The DCS has seven choppers, 4 of which have 3 "slots"



Disk 4B

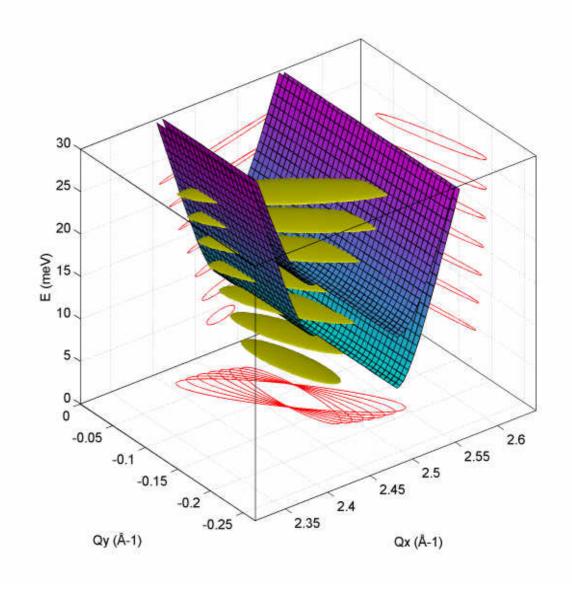
Time-of-flight Neutron Scattering: Fermi Choppers



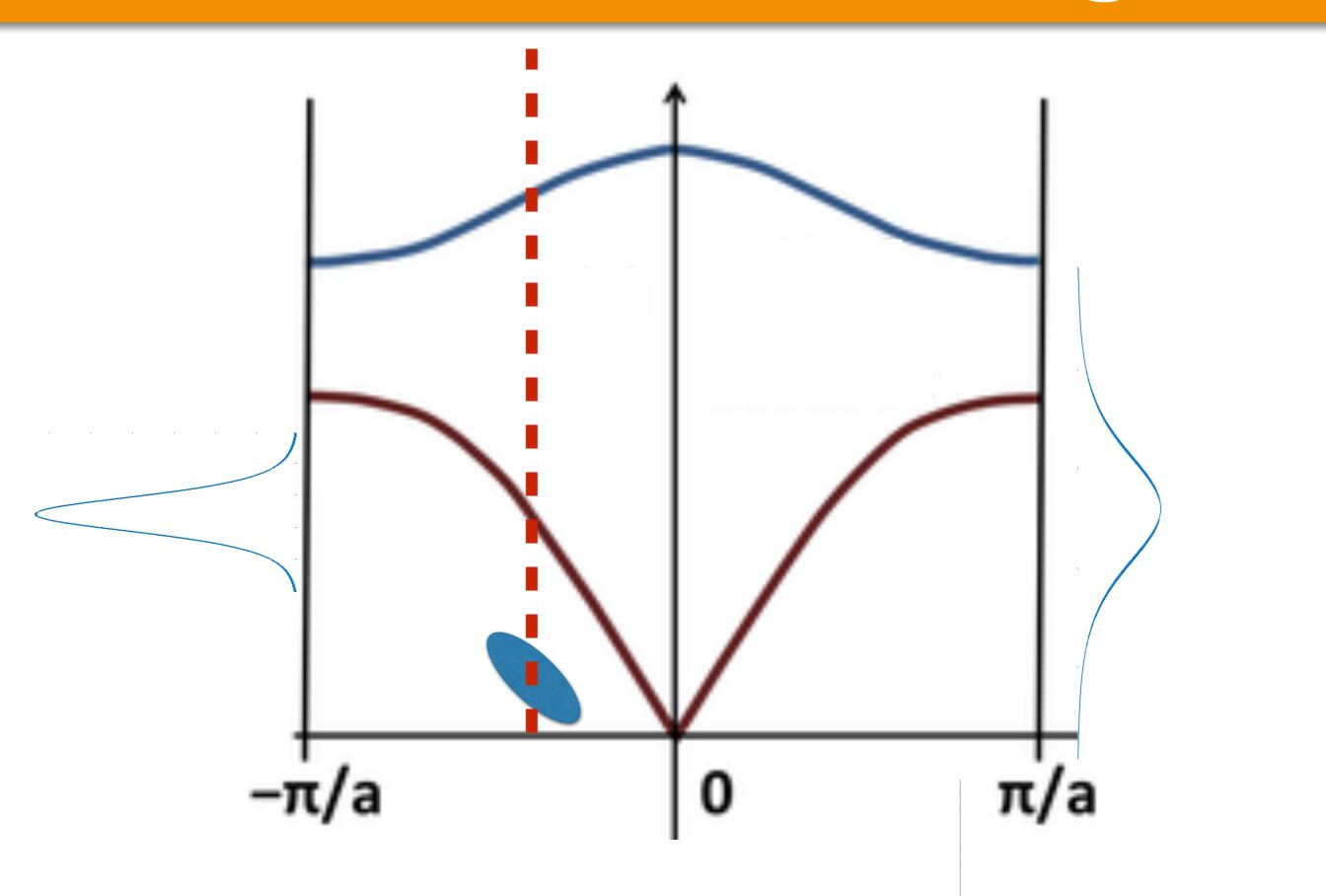
Resolution Considerations

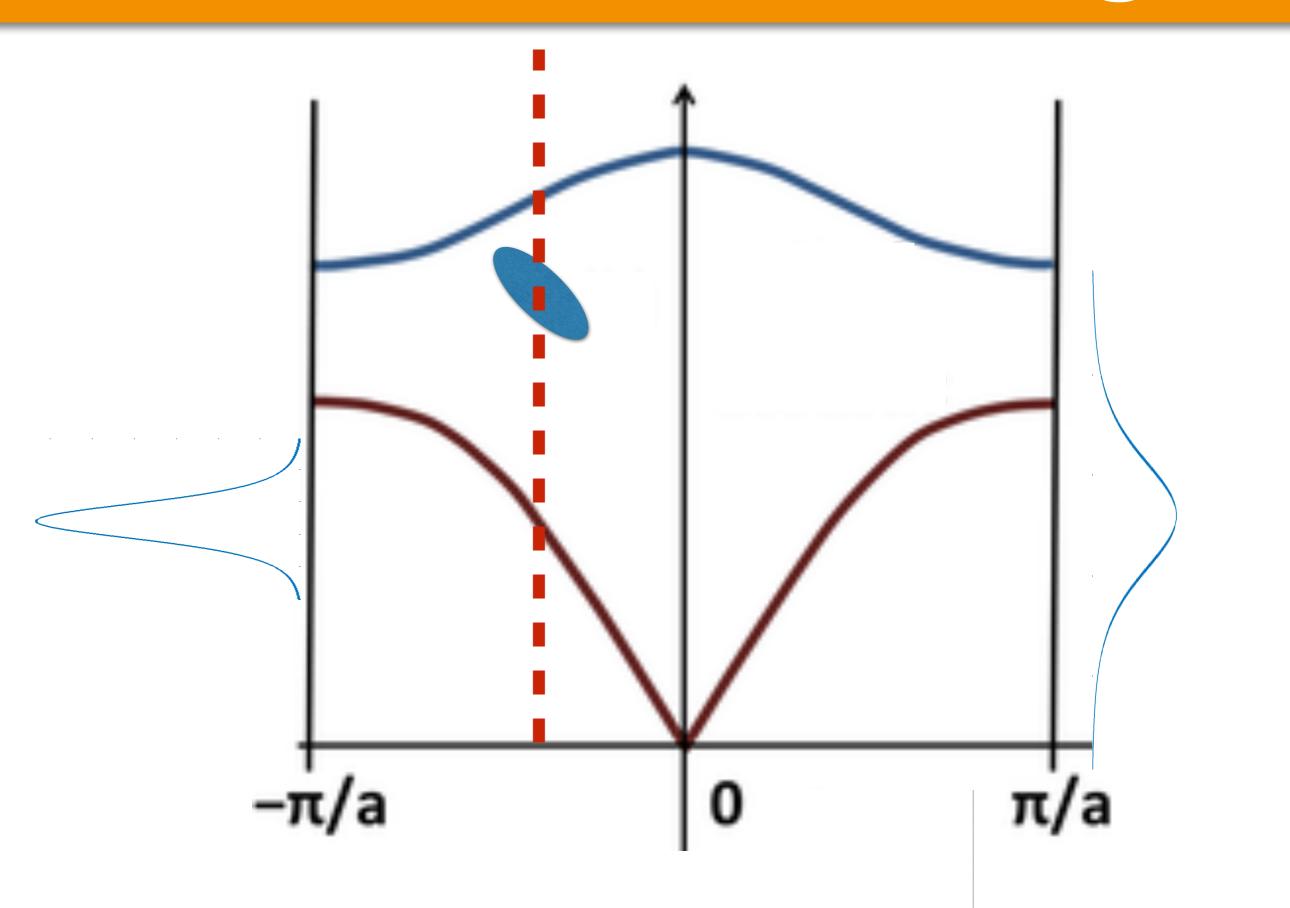
Resolution "ellipse" is defined by:

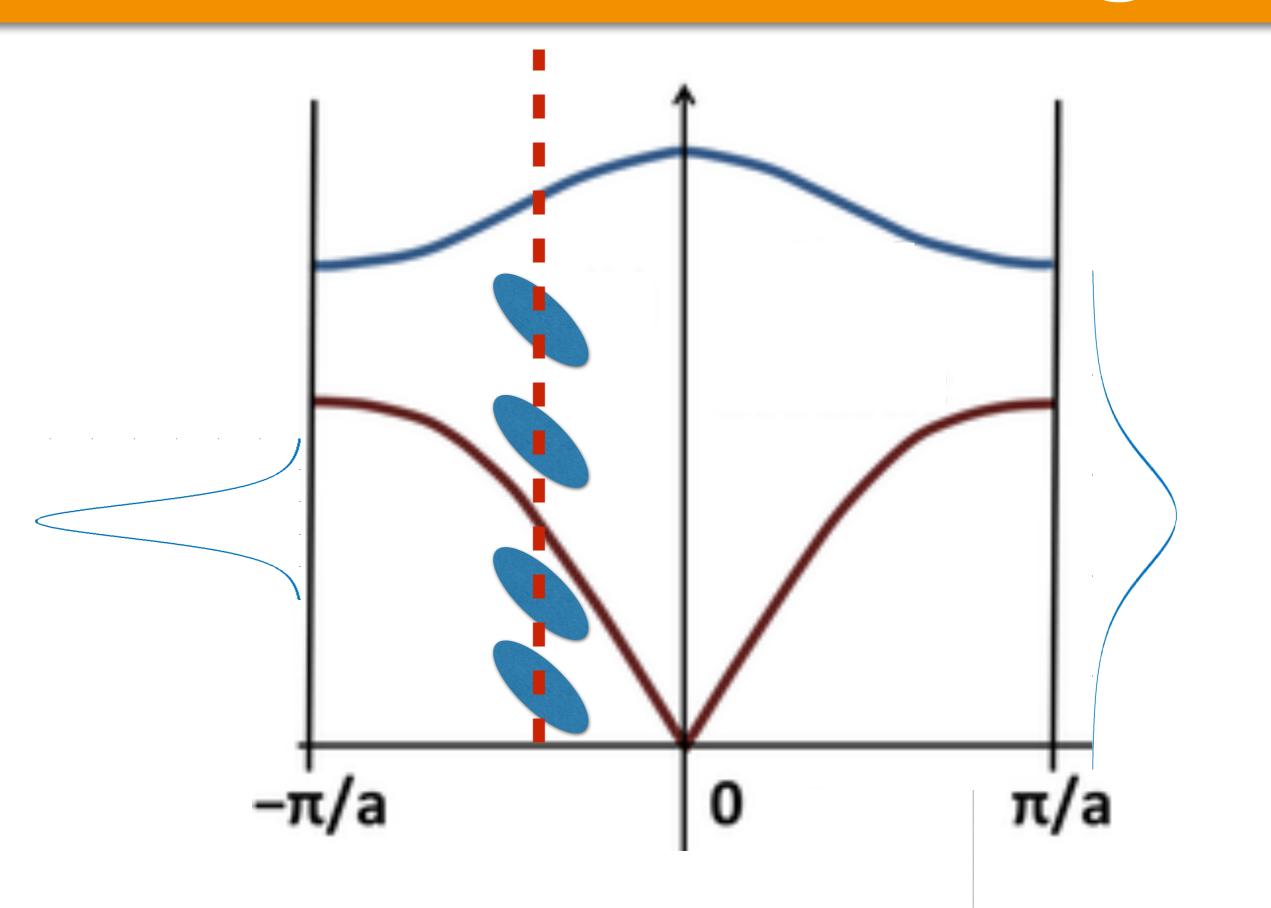
- Beam divergences
- Collimation and distances
- Crystal mosaic, sizes
- Beam energy

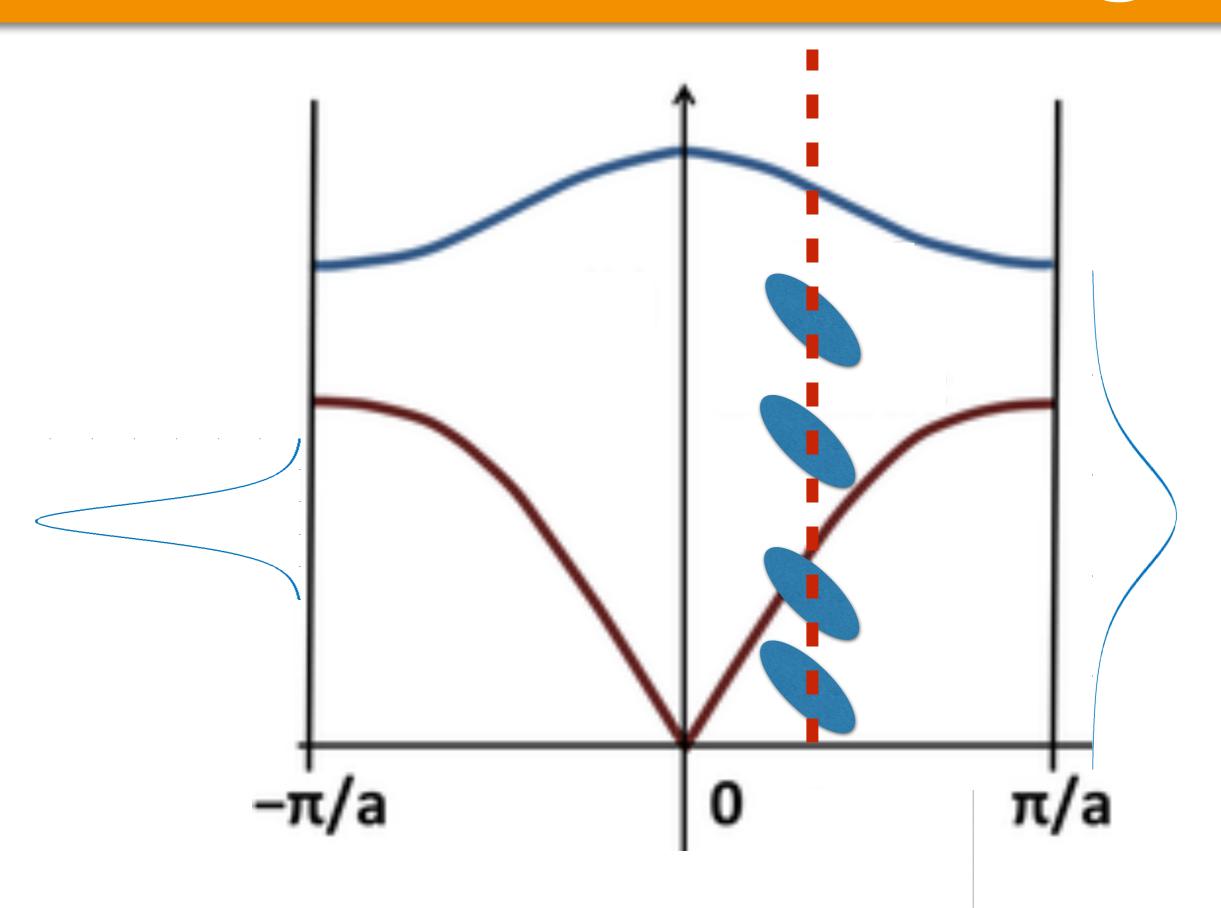


$$I(\vec{Q}_0,\hbar\omega_0) = \int S(\vec{Q}_0 - \vec{Q},\hbar\omega_0 - \hbar\omega)R(\vec{Q}_0,\hbar\omega_0) d\vec{Q} d\hbar\omega$$





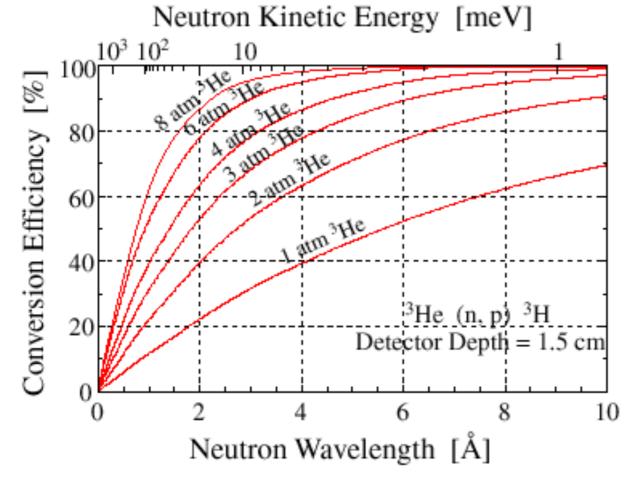




Neutron Detectors

Gas Detectors

- $n + {}^{3}He \longrightarrow {}^{3}H + p + 0.764 \text{ MeV}$
- ionization of gas
- high efficiency

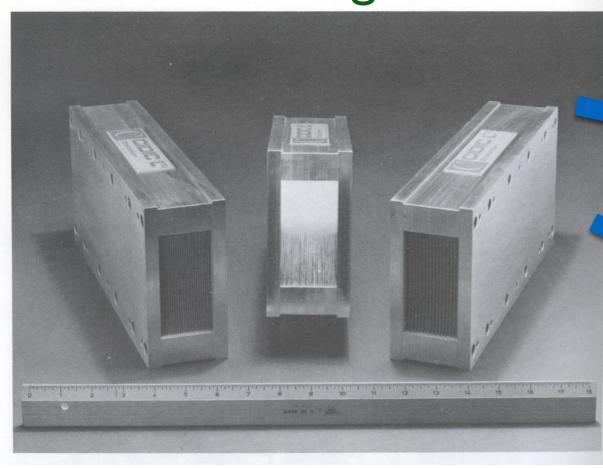


Beam monitors

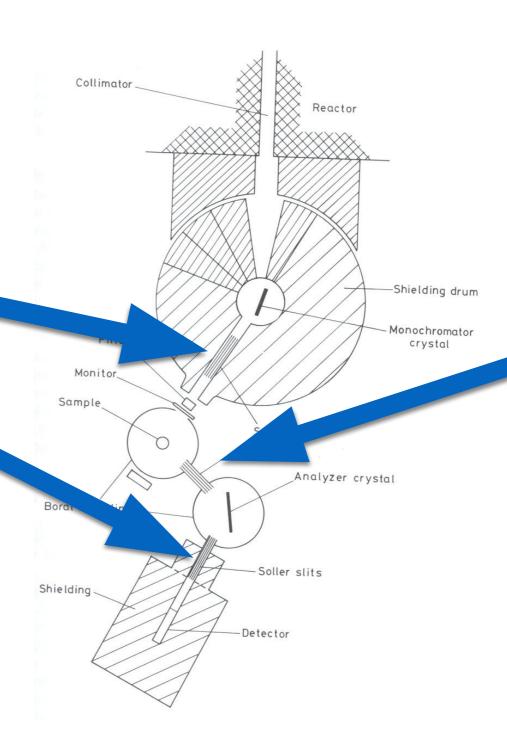
 low efficiency detectors for monitoring beam flux

Q or angular resolution improved by using collimation (Soller slits)

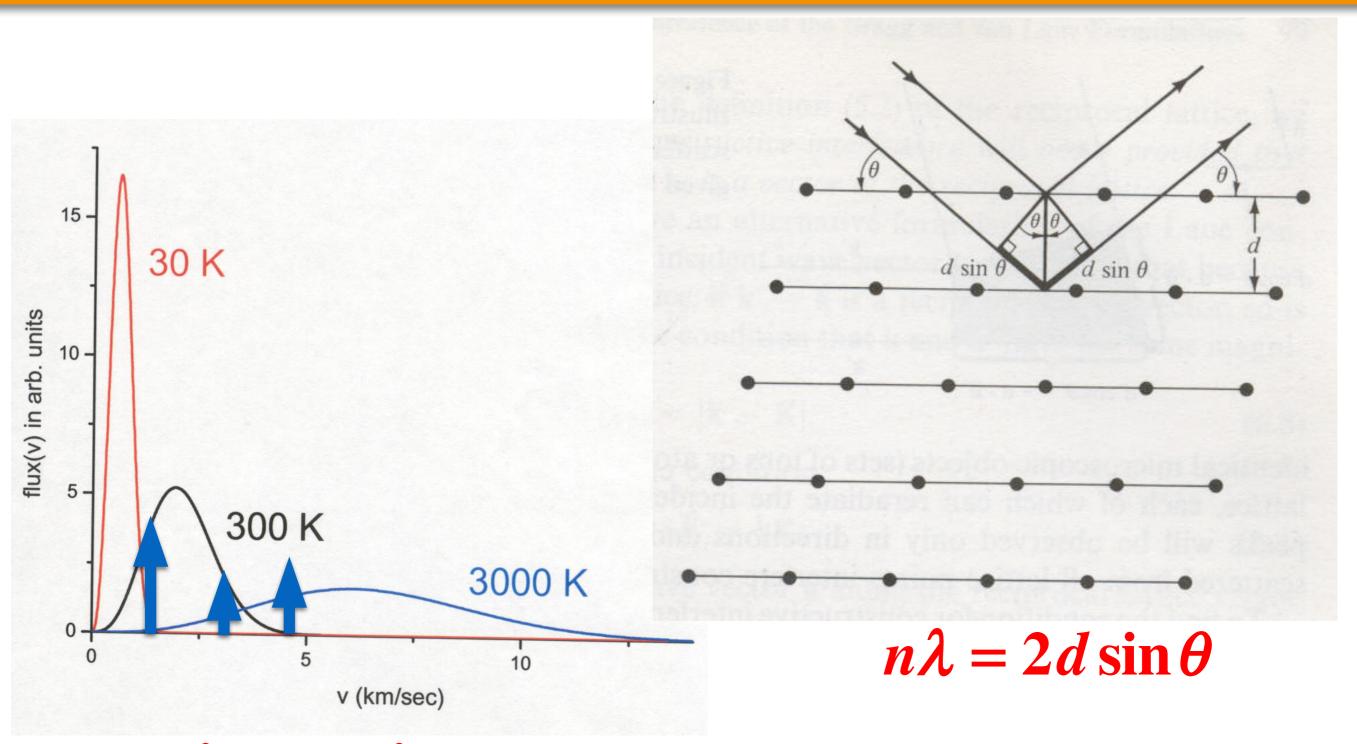
Soller slit collimators neutron channels with absorbing walls



Allows the angular resolution of $\mathbf{k_i}$, $\mathbf{k_f}$ to be selected

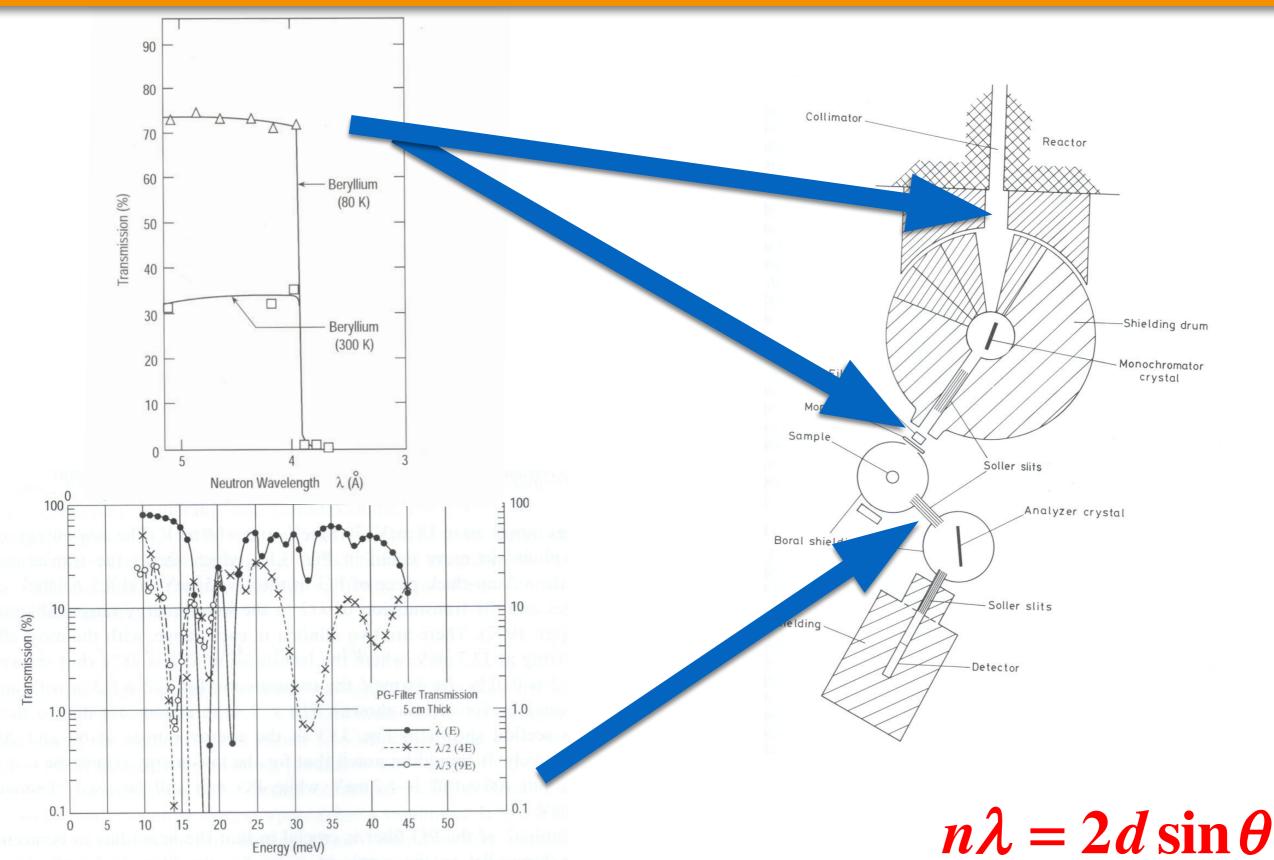


Harmonic contamination from crystal monochromators



$$\lambda, \frac{\lambda}{2}, and \frac{\lambda}{3}$$
 appear at the same θ with different n

Neutron filters remove λ /n from incident or scattered beam, or both.



Harmonic contamination from crystal monochromators: Pyrolitic Graphite

