A Survey of Inelastic Neutron Scattering

- Properties of the neutron
- The neutron scattering cross section

• The triple axis spectrometer

- Phonons
- Time-of-flight spectrometry
- Experimental details

Bruce D. Gaulin McMaster University

Neutrons: no charge spin = 1/2massive: mc²~IGeV 235**U** + n daughter nuclei 2-3 n + γ s

The Neutron as a Wave

Energy, wave vector, wavelength, velocity :

$$k = \frac{m_n v}{\hbar} = \frac{2\pi}{\lambda} \qquad E = k_B T = 0.08617 \, mev \cdot K^{-1} \times T$$

$$E = \frac{\hbar^2 k^2}{2m_n} = \frac{\hbar^2}{2m_n} (\frac{2\pi}{\lambda})^2 = \frac{81.81 \, mev \cdot \mathring{A}^2}{\lambda^2}$$

Neutrons with λ typical of interatomic spacings (~ 2 Å) have energies typical of elementary excitations in solids (~ 20 meV)

What are we typically trying to understand?

What is the atomic and magnetic structure of new materials? What are the dynamic properties of the atoms and the magnetic moments?

• How are structure and dynamics related to physical properties?

The Basic Neutron Scattering Experiment

Incident Beam

Scattered Beam

- Monochomatic
- "White"
- "Pink"

- Resolve its energy
- Don't resolve its energy
- Filter its energy

Fermi's Golden Rule within the 1st Born approximation

Neutrons scatter off nuclei

Dipole moment of the neutron interacts with the magnetic field generated by the electron

Dipole field due to orbital currents Dipole field due to Spin of the electron(s)

 2π

a

Bragg diffraction

constructive interference when

$$\vec{Q} = \vec{k}_i - \vec{k}_f = \vec{\tau}$$

= a reciprocal lattice vector

Elementary Excitations

Phonon Polarizations

Transverse Acoustic

Transverse Acoustic

• • • • • • •

Transverse Optic

Phonon eigenvectors and eigenvalues

Momentum $Q = k_i - k_f$

Phonons in 3D

Phonons in more complicated 3D structures

Chaplot, et al., Phys. Rev. B 52, 7230(1995).

KBr - two atoms/unit cell

3 acoustic phonon branches 3 optic phonon branches

La₂CuO₄ many atoms/unit cell

3 acoustic phonon branches 3n-3 = many optic phonon branches

Two different ways of performing constant-Q scans

 $\mathbf{Q} = \mathbf{k}_i - \mathbf{k}_f$

Mapping Momentum (Q) and Energy ($\hbar\omega$) space

Putting the Q-map of the scattering with the reciprocal lattice of the crystal

Putting the Q-map of the scattering with the reciprocal lattice of the crystal

Constant-Q triple axis data

Constant-E triple axis data

QR code for NXS Survey

Lecture – 9:45 – 10:45

Inelastic Neutron Scattering - Bruce Gaulin

https://forms.office.com/g/ASnB2UY2xT

The coherent neutron scattering cross section for phonons

$$S(\vec{Q},\hbar\omega) = \frac{1}{2NM} e^{-Q^2 \langle u^2 \rangle} \sum_{j,\vec{q}} |\vec{Q} \cdot \vec{\varepsilon}_j(\vec{q})|^2 \frac{1}{\omega_j(\vec{q})}$$

The displacement (eigenvectors) of the atoms must be // to the momentum transfer

×
$$(1 + n(\hbar\omega))$$
 $\delta(\vec{Q} - \vec{q} - \vec{\tau})$ $\delta(\hbar\omega - \hbar\omega_j(\vec{q}))$

The neutron can always create a phonon, but it cannot destroy a phonon unless one is already present

Momentum must be conserved Energy must be conserved

The coherent neutron scattering cross section for phonons

Longitudinal scan, q || ε

Transverse scan, $\mathbf{q} \perp \epsilon$

$$S(\vec{Q},\hbar\omega) = \frac{1}{2NM} e^{-Q^2 \langle u^2 \rangle} \sum_{j,\vec{q}} |\vec{Q} \cdot \vec{\varepsilon}_j(\vec{q})|^2 \frac{1}{\omega_j(\vec{q})}$$

× $(1+n(\hbar\omega)) \quad \delta(\vec{Q}-\vec{q}-\vec{\tau}) \quad \delta(\hbar\omega-\hbar\omega_j(\vec{q}))$

The coherent neutron scattering cross section for phonons

Time-of-flight Neutron Scattering

Neutrons have *mass* so higher energy means faster – lower energy means slower

15 30 K flux(v) in arb. units 10 5 300 K 3000 K 5 10 v (km/sec)

 $v (km/sec) = 3.96 / \lambda (A)$

- 4 A neutrons move at ~ 1 km/sec
- DCS: 4 m from sample to detector
- It takes 4 msec for elastically scattered 4 A neutrons to travel 4 m
- msec timing of neutrons is easy
- $\delta E / E \sim 1-3 \%$ very good !

We can measure a neutron's energy, wavelength by measuring its speed

Time-of-flight Neutron Scattering

Time-of-flight Neutron Scattering

Time-of-flight Neutron Scattering: Disc Choppers

A single (disk) chopper pulses the neutron beam.

A second chopper selects neutrons within a narrow range of speeds.

Counter-rotating choppers (close together), with speed \bullet , behave like single choppers with speed 2 \bullet . They can also permit a choice of pulse widths.

Additional choppers remove "contaminant" wavelengths and reduce the pulse frequency at the sample position.

Time-of-flight Neutron Scattering: Disc Choppers

The DCS has seven choppers, 4 of which have 3 "slots"

Time-of-flight Neutron Scattering: Fermi Choppers

4D data sets for single crystals can be very large ~ 2 Tbyte

Resolution Considerations

Resolution "ellipse" is defined by:

Beam divergences
Collimation and distances
Crystal mosaic, sizes
Beam energy

 $I(\vec{Q}_0,\hbar\omega_0) = \int S(\vec{Q}_0 - \vec{Q},\hbar\omega_0 - \hbar\omega) R(\vec{Q}_0,\hbar\omega_0) d\vec{Q} d\hbar\omega$

Q or angular resolution improved by using collimation (Soller slits)

Allows the *angular* resolution of **k**_i, **k**_f to be selected

Harmonic contamination from crystal monochromators

Neutron filters remove λ/n from incident or scattered beam, or both.

Harmonic contamination from crystal monochromators: Pyrolitic Graphite

Neutron Detectors

Gas Detectors

- n + ³He → ³H + p + 0.764 MeV
- ionization of gas
- high efficiency

Beam monitors low efficiency detectors for monitoring beam flux

QR code for NXS Survey

Lecture – 11:00 – 12:00

Inelastic Neutron Scattering - Bruce Gaulin

https://forms.office.com/g/prSUXFZgni

