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“Nothing looks so much like a new effect as a screw-up.”

LarsonMills Noggle White
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Corollary: New effects often look like screw ups.



Simultaneous scattering for single crystals
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i. Parasitic scattering (depleted beam intensity)
- Lines of weakened intensity streak across data

ii. Elastic-elastic double scattering with instrument
- Misplaced powder rings

iii. Elastic-elastic double scattering within sample
- Modified Bragg intensities

iv. Elastic-inelastic double scattering
- ‘Ghost’ excitations

Some effects of simultaneous scattering



Example: Paraelectric (cubic)/ferroelectric crystal (pseudo-cubic)
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Mosaic from ferroelectric domains 
increases flux of diffracted beams by 
an order of magnitude.
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ARCS beam
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Paraelectric crystal 
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Useful command in HORACE for time-of-flight data 
http://horace.isis.rl.ac.uk/Run_inspector

Allows you to find which run contributed to a particular part of the spectrum
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http://horace.isis.rl.ac.uk/Run_inspector
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a path length increase on time-
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energy loss.
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Vary the incident/final probe energy (easy) or instrument type (hard)

M.	E.	Manley,	et	al.	Phys.	Rev.	B	94,	104304	(2016).

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.104304


Parasitic diffraction lines break crystal symmetry

Can you identify the 
parasitic diffraction 
line in this data? 

Large data sets collected on modern instruments make identification easier



Simultaneous reflections for single-crystal diffraction

Simultaneous reflections alters intensities – check for by rotating about Q 
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The Effects of S imul taneous  Reflections on S ingle -Crysta l  
Neutron Diffraction Intensit ies* 

BY l~. ~4~. MOON~" AND C. G. SE~LL 
Department of Physics, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A. 

(Received 8 July 1963) 

The intensity changes produced in single-crystal diffraction reflections when one or more secondary 
reflections occur simultaneously are discussed both theoretically and experimentally. The theory 
is an extension of the usual treatment of secondary extinction, based on the mosaic crystal model. 
An approximate solution, valid in the thin crystal limit, is in good agreement with neutron diffrac- 
tion experiments on single crystals of iron. Both theory and experiment demonstrate the importance 
of sample geometry on the magnitude and sign of the simultaneous reflection effects. The effects may 
be minimized by controlling the sample geometry in addition to the usual precautions taken to 
reduce secondary extinction. 

I n t r o d u c t i o n  
The in terpre ta t ion  of the  in tens i ty  found in a single- 
crysta l  diffraction reflection is based on the assumpt ion 
tha t  only one Bragg reflection is occurring. However, 
i t  has long been known tha t  the s imultaneous oc- 
currence of a second reflection is not  uncommon and  
t ha t  the presence of a second reflection modifies the 
in tens i ty  of the first  (primary) reflection. In  accurate 
in tens i ty  measurements ,  this  effect is as impor tan t  
as secondary extinction,  yet  i t  has received scant  
a t t en t ion  in the l i terature.  

The s implest  case of one secondary reflection is 

Sphere of 

~ .  ~ . . ~  ~ ~ ~ ~ . . . ~  . 

Fig. 1. Geometric representation of simultaneous reflections 
in the reciproca] lattice. Points 0, 1 and 2 lie on the sphere 
of reflection. The unit vectors S 0, S 1 and S 2 define the 
direction of the incident, primary and secondary beams. 

* This research was supported by a grant from the National 
Science Foundation. 

t Lincoln Staff Associate, now at Oak Ridge National 
Laboratory, Oak Ridge, Tennessee. 

i l lus t ra ted  in  Fig. 1. Point  C is the center of the Ewald  
sphere of reflection which passes through the three 
reciprocal la t t ice points  0, 1 and  2. The directions of 
the incident,  p r imary  and  secondary beams are given 
by  uni t  vectors So, $1 and  $2. Ins tead  of the cus tomary 
Miller indices, i t  is convenient  to designate reflection 
processes by  two subscripts which describe the direc- 
t ion of the incident  and  reflected beam. Thus, the 
reciprocal lat t ice vector H12 is associated wi th  a 
reflection from the  direction $1 to the  direction $2. 
I t  is impor tan t  to realize tha t  each of the beams can 
be reflected into each of the other two directions, so 
tha t  when three lat t ice points  are on the sphere, there 
are six reflection processes to consider. 

The f irst  reported observat ion of the  influence of 
s imultaneous X-ray  reflections concerned the  effect 
called 'aufhel lung '  (Wagner, 1920) which corresponds 
to a d iminut ion  of the p r imary  intensi ty .  There are 
two processes constr ibut ing to this  decrease: the re- 
f lection 0-+2 removes power from the incident  beam, 
thereby  decreasing the power avai lable  for t ransfer  
in the 0-+1 reflection; and  the process 1-->2 di rect ly  
removes power from the  p r imary  reflected beam. 
These effects are opposed by  the process 0-+2-+1 which 
adds power to the  p r i m a r y  beam. The increase in  
p r imary  power, called 'umweganregung' ,  was f i rs t  
observed for X-rays  by  Renninger  (1937), who made  
the f irst  thorough exper imenta l  s tudy  of the  s imulta-  
neous reflection effects. His exper iment  consisted in 
posit ioning the crystal  and  detector on a diffract ion 
peak, then  rota t ing the crystal  about  the  scat ter ing 
vector. In  Fig. 1, the  crystal  is ro ta ted  in  az imuth  
about  the reciprocal lat t ice vector H01 and  an  in tens i ty  
change in the p r imary  beam is observed as point  2 
passes through the  sphere of reflection. I-Iis work is 
pr inc ipal ly  remembered  for the large posit ive in tens i ty  
var ia t ions  found in  the forbidden d iamond  (222) 
reflection, bu t  i t  should be noted t ha t  he found both  
positive and negat ive in tens i ty  f luctuat ions of 10 to 

R. M. MOON A ~ D  C. G. SHULL 807 

~Po(O) ~ Po(O) P,(O) 

P,(T) Po('T) P~(T) 
(a) (b) 

Fig. 2. Neut ron  beam passage th rough crystal  plate:  
(a) P r imary  and secondary beams in transmission. 
(b) P r imary  beam in reflection; secondary beam in trans- 
mission. 

probably not too useful owing to the multitude of 
special cases that  are encountered in practice. 
Fortunately, a useful approximate solution can be 
obtained quite easily. We consider the case of low 
secondary extinction and low absorption, which is the 
usual case in experiments where quantitative use of 
intensity measurements is necessary. For the neutron 
case this implies that  rijli < 1 and #li < 1, where It 
is the path length of beam i in the crystal. If the 
crystal is of thickness T, then 

li = T/~' i .  (5) 

For the case illustrated in Fig. 2(a), in which all 
secondary beams are of the transmission type, the 
boundary conditions at x = 0  are P0=P0(0) and 
P l = P i = 0 .  We use a Taylor's series expansion of 
Pl (x )  about the point x=0 ,  retaining terms up to the 
second order: 

P~(T)  = PI(o)+dPI~ ~=o d2P1 ~=o T~" T + ½-~Tx2 . (6) 

Using the boundary conditions, the first term of 
equation (6) is zero and the second term is equal to 
Po(O)ro~lo. The third term is obtained by differentiating 
equation (3) and using the boundary conditions and 
equations (2), (3) and (4) to evaluate the resulting 
first derivatives. We obtain 

PI(  T)/Po(O ) = rollo - ½roilo[#lo +lull + rollo + rloll 
+ ~'(ro~lo + r~il~)] + 1.~ro~lor~l~. (7) 

i i 

"If there are no secondary reflectiorm, the corresponding 
solution is obtained by setting all r0~ equal to zero. 
The pure primary reflected power is thus, 

PI(T)/Po(O) -- r01/0[1 - ½(#lo + # l l  + roilo + rl0/l)]. (8) 

The change in the primary reflection caused by the 
presence of the secondary beams is given by the 
difference between equations (7) and (8), 

d P l ( T ) / P o ( O )  = ½~,( - rolloro~lo- rollorl~ll + ro~lor~ll~) . (9) 
i 

Consider first the solution for the case of no secon- 

dary reflections, which is easy to solve exactly (See 
Bacon & Lowde, 1948 or Zachariasen, 1945). The 
exact solution for the symmetric transmisson case 
with one reflected beam is 

PI(T)/Po(O) = ½ [ 1 - e x p ( -  2r01/0)]exp(-td0 ) . (10) 

I t  is easily shown that  equation (10) reduces to equa- 
tion (8) in the limit rollo < 1 and tel0 < 1. Recall that  
rol=-rlo and lo=l l  for symmetric transmission. I t  is 
more interesting to note that  the exact solution for 
the symmetric reflection case also reduces to equa- 
tion (8) even though the boundary conditions are 
different. This may be most easily seen from the zero 
absorption case, for which the exact solution for the 
symmetric reflection case is 

PI(T)/Po(O) -- ro~lo/(1 + rollo) . (11) 

The fact that  equation (8) is a good approximation in 
the low extinction limit for either the transmission or 
reflection cases illustrates an important property of 
the approximate solution when simultaneous reflec- 
tions are present. I t  can be shown that  equation (7) 
is valid up to terms of second order in the reflectivities 
regardless of the boundary conditions, provided that  
we are dealing with a flat plate sample. That is, the 
reflected beams can be of either transmission type or 
reflection type or any mixture thereof. 

The effects of simultaneous reflections are con- 
veniently discussed by examining equation (9). The 
two negative terms are similar to the usual secondary 
extinction correction and describe the effect called 
'aufhellung'. The first term of equation (9) represents 
that  portion of the power reflected from the incident 
beam into beam i, which would have been reflected 
into the primary beam in the absence of the secondary 
reflection. The second term accounts for the direct 
reduction of the primary beam by reflection into the 
various secondary beams. The third term accounts for 
'umweganregung', the increase in the primary beam 
by reflections into this beam from all the secondary 
beams. 

We turn now to an evaluation of the reflectivity 
coefficients, defined in equation (1). The familiar 
expressions for Q and the mosaic distribution function 
are valid when the crystal is rotated about an axis 
normal to the incident and reflected beams, as in the 
usual rocking curve experiment. This relationship will 
not be satisfied for the secondary reflections, so we 
desire general expressions for Q and the mosaic 
distribution, valid for rotation about an arbitrary 
axis. We assume the mosaic distribution to be of 
Gaussian form 

W(/IO~j) = [(2~)½~] -~ exp [-(/lO~j)2/2~'], (12) 

where/lO~j is the deviation in Bragg angle from the 
mean of the distribution. I t  can be shown that  

/10~1 = (sin y~ cos Z cos t/sin 20)~j/le = K [ / i e ,  (13) 
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Table 1. Comparison between calculated and observed intensity ratios 
P r i m a r y  ref lect ion:  Fe(200), ~ = 1"565 /~ 
Ref lect ion case Transmission case 

r 

R R R R Rp Rp RR RR Rp 
Calc. Obs. Calc. Obs. Calc. Obs. Calc. 

Rp 
Obs. 

(110) 0 o ( l i0 )  +0-30 +0 .36  +0 .29  +0 .28  --0.10 --0-10 --0-04 --0.05 
(121) 8.6 +0 .05  +0 .05  +0.07  +0 .03  --0.01 0.00 --0.01 0-00 
(211) 17.4 --0.14 --0.15 --0-07 --0.08 +0.01 +0.02  +0 .05  +0 .04  (oTI) 
(222) 21-6 --0-15 --0.16 --0.07 --0.06 --0.03 --0-02 +0-02 --0.01 (022) 
(1i2) 27.7 +0 .05  +0 .05  +0 .07  +0 .05  --0.06* --0-07* --0-04* --0-04* 
(103) 29.8 +0 .05  +0 .03  +0.07  +0 .02  
(220) 40.6 --0-13 --0.15 --0-07 --0.08 --0.11 --0.11 --0-06 --0.07 (o2o) 

* The (112) and  (103) dips were no t  exper imenta l ly  resolved in this case. The calcula ted numbers  were added  for the  two cases. 

the positive term in equation (9) was multiplied by a 
factor [1-½(riol~+ri~l~)]. The theory also assumed 
that  the instrumental broadening was very small 
compared with the mosaic spread. In the experiment~ 
the instrumental broadening was smaller than the 
width due to the mosaic spread, but both were of the 
same order of magnitude. This disagreement between 
theory and experiment casts doubt on the validity of 
the peak ratio calculation (equation 17), but the 
integrated ratio (equation 18) should show better 
agreement with experiment. Of course, the mosaic 
distribution was not a true Gaussian and, as we have 
noted, it showed directional properties, so at best we 
can hope for only approximate agreement. 

The comparison between theory and experiment is 

shown in Table 1. The experimental values in Table 1 
are averages obtained in several runs. In most cases 
the spread in the experimental values was larger than 
the difference between the experimental average and 
the calculated number. The calculations contain one 
experimentally determined parameter, the factor 
Qollo/(2~)½ U which appears as a scale factor in equa- 
tions (17) and (18). This can be obtained either by 
measuring the peak absolute reflectivity in the 
absence of any secondary reflections, 

r Q01Z0 ] Q01t0 ] 
PdOo,%4)/Po " [ ( 2 ~ J  [1 (2~)½r/J (20) 

or by measuring U and the absolute integrated re- 
flectivity, 

Q
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The intensity changes produced in single-crystal diffraction reflections when one or more secondary 
reflections occur simultaneously are discussed both theoretically and experimentally. The theory 
is an extension of the usual treatment of secondary extinction, based on the mosaic crystal model. 
An approximate solution, valid in the thin crystal limit, is in good agreement with neutron diffrac- 
tion experiments on single crystals of iron. Both theory and experiment demonstrate the importance 
of sample geometry on the magnitude and sign of the simultaneous reflection effects. The effects may 
be minimized by controlling the sample geometry in addition to the usual precautions taken to 
reduce secondary extinction. 

I n t r o d u c t i o n  
The in terpre ta t ion  of the  in tens i ty  found in a single- 
crysta l  diffraction reflection is based on the assumpt ion 
tha t  only one Bragg reflection is occurring. However, 
i t  has long been known tha t  the s imultaneous oc- 
currence of a second reflection is not  uncommon and  
t ha t  the presence of a second reflection modifies the 
in tens i ty  of the first  (primary) reflection. In  accurate 
in tens i ty  measurements ,  this  effect is as impor tan t  
as secondary extinction,  yet  i t  has received scant  
a t t en t ion  in the l i terature.  

The s implest  case of one secondary reflection is 
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Fig. 1. Geometric representation of simultaneous reflections 
in the reciproca] lattice. Points 0, 1 and 2 lie on the sphere 
of reflection. The unit vectors S 0, S 1 and S 2 define the 
direction of the incident, primary and secondary beams. 

* This research was supported by a grant from the National 
Science Foundation. 

t Lincoln Staff Associate, now at Oak Ridge National 
Laboratory, Oak Ridge, Tennessee. 

i l lus t ra ted  in  Fig. 1. Point  C is the center of the Ewald  
sphere of reflection which passes through the three 
reciprocal la t t ice points  0, 1 and  2. The directions of 
the incident,  p r imary  and  secondary beams are given 
by  uni t  vectors So, $1 and  $2. Ins tead  of the cus tomary 
Miller indices, i t  is convenient  to designate reflection 
processes by  two subscripts which describe the direc- 
t ion of the incident  and  reflected beam. Thus, the 
reciprocal lat t ice vector H12 is associated wi th  a 
reflection from the  direction $1 to the  direction $2. 
I t  is impor tan t  to realize tha t  each of the beams can 
be reflected into each of the other two directions, so 
tha t  when three lat t ice points  are on the sphere, there 
are six reflection processes to consider. 

The f irst  reported observat ion of the  influence of 
s imultaneous X-ray  reflections concerned the  effect 
called 'aufhel lung '  (Wagner, 1920) which corresponds 
to a d iminut ion  of the p r imary  intensi ty .  There are 
two processes constr ibut ing to this  decrease: the re- 
f lection 0-+2 removes power from the incident  beam, 
thereby  decreasing the power avai lable  for t ransfer  
in the 0-+1 reflection; and  the process 1-->2 di rect ly  
removes power from the  p r imary  reflected beam. 
These effects are opposed by  the process 0-+2-+1 which 
adds power to the  p r i m a r y  beam. The increase in  
p r imary  power, called 'umweganregung' ,  was f i rs t  
observed for X-rays  by  Renninger  (1937), who made  
the f irst  thorough exper imenta l  s tudy  of the  s imulta-  
neous reflection effects. His exper iment  consisted in 
posit ioning the crystal  and  detector on a diffract ion 
peak, then  rota t ing the crystal  about  the  scat ter ing 
vector. In  Fig. 1, the  crystal  is ro ta ted  in  az imuth  
about  the reciprocal lat t ice vector H01 and  an  in tens i ty  
change in the p r imary  beam is observed as point  2 
passes through the  sphere of reflection. I-Iis work is 
pr inc ipal ly  remembered  for the large posit ive in tens i ty  
var ia t ions  found in  the forbidden d iamond  (222) 
reflection, bu t  i t  should be noted t ha t  he found both  
positive and negat ive in tens i ty  f luctuat ions of 10 to 



Elastic-inelastic scattering for single crystals (ghostons)

Physica B 350 (2004) 11–16

Chasing ghosts in reciprocal space—a novel inelastic neutron
multiple scattering process

H.M. Rønnowa,b,*, L.-P. Regnaultb, J.E. Lorenzoc

aNEC Laboratories, Princeton and University of Chicago, USA
bMDN/SPSMS/DRFMC, CEA-Grenoble, 38054 Grenoble, France
cLaboratoire de Cristallographie, CNRS, 38042 Grenoble, France

Abstract

We have discovered that a recently reported weak excitation branch in the spin-Peierls material CuGeO3 is in fact a
ghost image of the primary magnetic excitation shifted in reciprocal space by a novel multiple scattering process. A
model is developed that predicts the occurrence of such multiple scattering and accounts for the observations in
CuGeO3:New ‘ghostons’ can occur when the magnetic unit cell is smaller than the structural, while mixing of intensities
from different reciprocal space zones jeopardize accurate polarisation analysis and the study of weak modes in general.
r 2004 Elsevier B.V. All rights reserved.

PACS: 25.40.Fq; 75.40.Gb; 78.70.Nx

Keywords: Inelastic neutron scattering; Copper germanate CuGeO3; Neutron polarisation analysis

Introduction

Development of neutron spectrometers with
high flux while maintaining a low intrinsic back-
ground has lately opened the ability to study weak
features in the excitation spectrum or, conversely,
apply polarisation analysis to obtain qualitatively
new information. However, as we shall demon-
strate in this paper, increased sensitivity also
brings about new spurious scattering effects.

Aiming to deploy high accuracy polarisation
analysis of inelastic neutron scattering as a tool to
study composite correlation functions in emerging
materials that owe their novel properties to inter-
play between different degrees of freedom such as
spin, charge, orbital and lattice fluctuations, we
have performed detailed studies of CuGeO3; in
which intimate coupling between quasi-one dimen-
sional spin chains and lattice vibrations cause a
spin-Peierls transition to a non-magnetic dimerised
ground state [1]. The primary excitation hereof is a
bound domain wall pair with minimum energy gap
of 2 meV at 0; k; 12

! "

; and a strong dispersion along
l; the chain direction. The unit cell contains two
magnetic ions along the b direction, which gives
the dispersion along k a periodicity of two with

ARTICLE IN PRESS

*Corresponding author. ETH-Zurich & Paul Scherrer
Institut, 5232 Villigen, Switzerland, Tel.: +41 56 310 4668;
fax: +41 56 310 2939.

E-mail address: henrik.ronnow@psi.ch (H.M. Rønnow).

0921-4526/$ - see front matter r 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physb.2004.04.048

Q

ki

-kf

(000)

(2,+0.3,0)

Ewald sphere
for ki

t

Requires two conditions (Bragg first case):

1. Bragg condition:  |ki|=|ki-t| (Bragg first)

2. Excitation at q = Q – t (with energy E)

q

real spectral weight by the reciprocal space vector
t; as illustrated in Fig. 4. If an excitation with
dispersion EðqÞ has a longer periodicity than t; so
that there is no pre-existing scattering at EðQÞ;
multiple scattering can create a ghost-like image of
the real excitation. This ‘ghoston’ mode will inherit
the same dependencies on temperature, magnetic
field and other parameters often used to check
against spurious scattering. If the dispersion is
symmetric with respect to t; multiple scattering
will fold back intensity from the same excitation in
a different zone of reciprocal space.

1.2. Effect on polarisation analysis

The incident Pi and final Pf neutron polarisa-
tions are conveniently applied along xjjQ; y>Q in
the scattering plane and z>Q and the scattering
plane. For multiple scattering, however, q is
relevant, not Q ¼ qþ t: As a consequence, the
components of the polarisation tensor Pab ¼
ðINSF % ISFÞ=ðINSF þ ISFÞ become mixed. In ab-
sence of nuclear-magnetic interference, /NwMS ¼
0; and chiral magnetic correlations, /Mw &MS ¼
0; the final neutron polarisation is given by

Pf s ¼/PiðNwNÞ þ ðPi 'Mw
>ÞM> þMw

>ðPi 'M>Þ

% PiðMw
> 'M>ÞSP0; ð3Þ

where s ¼ /NwN þMw
>M>S; M> ¼ M % #q

ðM ' #qÞ ¼ ð0;My;MzÞ; #q ¼ q=jqj and P0 is the
instrumental polarisation. Without mixing, Paa ¼
ð2Z% 1; Zþ m ; Z% m ÞP0; where Z ¼ /NwNS=s is

the nuclear fraction and m ¼ /Mw
yMy %Mw

zMzS=s
measures magnetic anisotropy. Normally, Pxx

alone is used to separate magnetic from nu-
clear scattering, but we recommend using
/NNS=/MMS ¼ ðP0 þ

P

aPaaÞ=ð3P0 %
P

aPaaÞ;
which is robust towards misalignment of the
polarisation coordinate system. Given Q and q it
is always possible to determine /NNS and the
two non-zero magnetic components from Paa:
Assuming purely magnetic isotropic scattering
for instance, Paa ¼ % #q2a:

2. Application to CuGeO3

Applying the ghoston model to CuGeO3; we
first notice that with two magnetic ions along the
b-direction, there exist reciprocal lattice vectors
with k odd, which can indeed shift the primary
excitation to the positions where the weak mode is
found. In Fig. 5 the kf and relative weight for each
t is shown by a vertical line. Representing
resolution by a fixed width (0:12 (A%1 FWHM)
Gaussian, the resulting prediction is shown by a
solid line. Though the agreement with measure-
ment is not perfect, it does produce good
coincidence of peaks and is definitely sufficient to
conclude that the intensity observed at even k is
dominantly inelastic multiple scattering. We note
that the same overall intensity scale factor was
used for k ¼ 0 and k ¼ 2:

In Fig. 6 the same scale factor has been applied
to Q ¼ 0; 1; 12

! "

; where there is both back-folding
of intensity from different zones and extinction of
the original intensity. The net effect shown by the
thick line is significant, although too featureless to
reveal itself in the measured kf -dependence.

Turning to the polarisation at ð0; 2; 12Þ; Fig. 7
shows the ghoston prediction. Correcting for
instrumental polarisation P0 ¼ 0:90; the prediction
at kf ¼ 2:662 (A%1 yields Paa ¼ %ð0:08; 0:50; 0:32Þ;
which given the simplicity of the model is
impressively close to the measured values Paa ¼
%ð0:14; 0:37; 0:35Þ70:03: In particular the anom-
alous Pxx > Pyy;Pzz is reproduced. At 0; 1; 12

! "

; the
g ¼ 4% back-folded contribution has polarisation
Paa ¼ %ð0:17; 0:55; 0:29Þ; which should change the
polarisation PM ¼ ð%P0; 0; 0Þ of an isotropic
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2

Fig. 4. Illustration of how multiple scattering shifts inelastic
intensity in reciprocal space. (1) New ‘ghoston’ modes occur
when a dispersion is shifted to an empty zone in reciprocal
space. (2) Back-folding of intensity from the same excitation in
a different zone.

H.M. Rønnow et al. / Physica B 350 (2004) 11–1614

Weak effect (<1-2%) but common because dispersion curves are everywhere



BOSSY, OLLIVIER, AND GLYDE PHYSICAL REVIEW B 99, 165425 (2019)

0.0

0.5

1.0

1.5

2.0

2.5
T = 0.78 K T = 1.00 K T = 1.20 K

0.0

0.5

1.0

1.5

2.0

E
ne

rg
y

tr
an

sf
er

[m
eV

] T = 1.40 K T = 1.60 K T = 1.80 K

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

T = 2.00 K

0.0 0.5 1.0 1.5 2.0

Wave vector [Å−1]
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FIG. 5. As Fig. 3 at filling (4), N4 = 43.5 mmol/g, overfilled nanopores. An intense, well-defined P-R mode of bulk liquid 4He and multiple
scattering from the roton at temperatures up to T = 2.0 K is observed.

region, Q ≃ 1.95 Å
−1

, the mode energies in FSM are again
the same as those in bulk liquid 4He within precision.

D. Temperature dependence of S(Q, E ) at SVP

The temperature dependence of S(Q, E ) of liquid 4He in
FSM-16 at filling (2), N2 = 32 mmol/g, is shown in Fig. 8
at Q = 1.1 Å

−1
and 1.95 Å

−1
. The aim is to determine

the temperature, TPR, at which well-defined modes are no
longer observed directly from the data. As temperature is
increased, the P-R mode broadens and the intensity in the
mode decreases, particularly at T ! 1.2 K. At Q = 1.1 Å

−1
,

the mode is observed up to but not above 1.7 K. At 1.8 K
and 2.0 K there is no mode at Q = 1.1 Å

−1
. S(Q, E ) changes

little with temperature between 1.8 K and 2.0 K. Similarly, at
the roton wave vector, Q = 1.95 Å

−1
, the P-R mode broadens

and decreases in intensity with increasing temperature. The

temperature at which the P-R mode is last observed is more
difficult to identify precisely at Q = 1.95 Å

−1
since S(Q, E )

continues to change with increasing temperature above 1.8 K.
From the data at Q = 1.1 Å

−1
we take TPR = 1.8 K at SVP.

We identify TPR with TBEC, the onset temperature of BEC.

E. Fits to the temperature dependence of S(Q, E ) at SVP

To confirm the temperature at which the P-R mode is
last observed, TPR, and to determine P-R mode energies and
widths, we fit the model given by Eqs. (1) and (2) to the
net S(Q, E ) of 4He in FSM-16 at filling N2 = 32 mmol/g at
Q = 1.1 Å

−1
and Q = 1.95 Å

−1
.

1. Q = 1 .1 Å
−1

At Q = 1.1 Å
−1

there is no layer mode. Equation (1) is
therefore modified to consist of a DHO fitted to the P-R
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Phonons, rotons, and localized Bose-Einstein condensation in liquid 4He
confined in nanoporous FSM-16
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We present neutron scattering measurements of the phonon-roton and layer modes of liquid helium confined
in 28 Å diameter nanopores of FSM-16. The goal is to determine the energy, lifetime, and intensity of the
modes as a function of temperature. It is particularly to determine the highest temperature, denoted TPR, at
which well-defined phonon-roton modes are observed at higher wave vector (Q > 0.8 Å

−1
) in the nanopores.

The temperature TPR, which can be identified with loss of Bose-Einstein condensation (BEC), can be compared
with the superfluid to normal liquid transition temperature, TO, and other transition temperatures of 4He in the
nanopores. The aim is to identify the nature of BEC in a narrow nanopore. Two pressures are investigated,
saturated vapor pressure (SVP) and p = 26 bars. We find that well-defined P-R modes are observed up to
temperatures much higher than the conventional superfluid to normal liquid transition temperature, TO, observed
in torsional oscillator measurements, i.e., TPR > TO. At SVP, TPR = 1.8 K and TO = 0.9 K. This supports the
interpretation that BEC exists in a localized or partially localized form in the temperature range TO < T < TPR;
i.e., there is a localized BEC region lying between the superfluid and fully normal liquid phase, as observed
in some other porous media. At close to full filling, the P-R mode energies in FSM-16 are similar to those
in bulk liquid 4He. However, a substantial P-R mode width at T → 0 K and at higher temperatures is
observed.

DOI: 10.1103/PhysRevB.99.165425

I. INTRODUCTION

Superfluidity of liquid 4He confined in porous media has
a rich history of interest [1–3] going back to the 1950s. In
confinement, the superfluid fraction, ρS/ρ, near the critical
temperature for superflow, TC , can be represented by the
same expression as in bulk liquid 4He, ρS/ρ = (1 − T/TC )γ ,
where γ is the critical exponent. In larger pore media such
as aerogel, Vycor [mean pore diameter (MPD), d = 70 Å],
and xerogel, confinement suppresses TC somewhat below bulk
liquid value Tλ with Tλ = 2.172 K at saturated vapor pressure
(SVP), e.g., TC = 1.95–2.05 K in Vycor [4–6] at SVP. The
critical exponent usually differs from the bulk value, γ =
0.67, but is found to be the same in Vycor [2,4]. In smaller
pore media such as gelsil (MPD d = 25 Å), TC is suppressed
well below Tλ (e.g., TC = 1.4 K at SVP in gelsil) [7,8]. In
addition, the phase diagram has been determined as a function
of both pressure and temperature [7,8]. At higher pressures,
TC may even go to zero. The pores in Vycor and gelsil are
interconnected. At full filling of the pores, confined liquid 4He
behaves like an interconnected 3D fluid [2].

Equally interesting are the phonon-roton (P-R) modes
[6,9–18] and Bose-Einstein condensation (BEC) in liquid
4He in porous media. In the superfluid phase of bulk liquid
4He, where BEC and superfluidity coexist, well-defined P-R
modes are observed at wave vectors out to Q = 3.6 Å

−1
.

However, in the normal liquid phase of bulk liquid 4He,
T ! Tλ, well-defined modes are observed at wave vectors
in the phonon region only, Q " 0.8 Å

−1
; i.e., a sound mode

only is observed as in other normal liquids. In the normal
liquid phase, where there is no BEC, only broad response in
the dynamical structure factor, S(Q, E ), is observed at higher
wave vectors Q ! 0.8 Å

−1
.

In contrast, liquid 4He in porous media supports a well-
defined mode at wave vectors out to Q = 3.6 Å

−1
at tem-

peratures above the superfluid phase [6,12,14,16,17,19], i.e.,
at T > TC , up to T ≃Tλ. This has been interpreted as the
existence of localized BEC (a Bose glass phase) at temper-
atures above TC , i.e., in the temperature range TC < T < Tλ.
Localized BEC is pictured as puddles of BEC and superflu-
idity (but no extended BEC) in an otherwise normal liquid
[7,8,12,17,19–21]. The puddles of BEC and superfluidity
support well-defined P-R modes at higher wave vectors. The
localized BEC “phase” lies between the superfluid and fully
normal liquid phases. A recent direct measurement of both
BEC and P-R modes in MCM-41 shows that the onset tem-
peratures of BEC, TBEC, and of well-defined P-R modes, TPR,
at Q > 0.8 Å

−1
coincide (i.e., TPR = TBEC) [22].

The dynamic response of liquid 4He in porous media
also shows other features not found in bulk liquid 4He. For
example, the liquid layers nearest the pore walls support a
layer mode [6,9–18,23]. The layer mode is observed at wave
vectors in the roton region, 1.7 Å < Q < 2.3 Å, only. The
layer mode has a roton-like energy dispersion with Q at an
energy lower than that of the roton. The layer mode energy
gap in Vycor [12] is $L = 0.55 ± 0.01 meV, significantly
lower than the P-R mode roton energy gap, $ = 0.742 meV at

2469-9950/2019/99(16)/165425(14) 165425-1 ©2019 American Physical Society

Example: Multiple scattering in liquid 4He

“ghost” roton
from multiple 
scattering

For liquids/glasses and powders multiple scattering appears incoherent



Example: Incoherent scattering in TiO2

Incoherent scattering cross section projects the transform of the Ti self-correlation 
function – related to Ti partial phonon DOS.



“Forbidden” modes (resolution effect)
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Example: Transverse acoustic phonon in longitudinal scan in PbSe

Q Q

Finite Q resolution introduces transverse components in longitudinal scans 

Triple-axis inelastic neutron scattering (BT7, NIST) Inelastic x-ray scattering (HERIX-30, APS)

M.	E.	Manley,	et	al.	Nature	Commun. 10,	1928	(2019).

https://www.nature.com/articles/s41467-019-09921-4


Useful software tools for triple-axis

Spurion calculator for triple-axis

http://reflectometry.org/tas/res/

M.	E.	Manley		et	al.	“Supersonic	
propagation	of	lattice	energy	by	
phasons in	fresnoite,”	Nature	
Commun.	9, 1823	(2018).

Resolution calculator for triple-axis

http://reflectometry.org/tas/res/
https://www.nature.com/articles/s41467-018-04229-1


Example: Background in UO2 phonon DOS measurement
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Recoil from Helium exchange gas
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Over subtraction occurred because there was more 
exchange gas in the ‘empty’ sample can than in the 
loaded can (obviously).  

He recoil line

Vanadium
phonons



Absorption correction

Detailed absorption correction calculations are 
always possible – but you cannot correct for no 
signal!

Al

Absorption ’shadows’

Magnetic Heusler alloy Ni45Co5Mn36.6In13.4

Flat plate 
geometry



https://docs.mantidproject.org/nightly/algorithms/AbsorptionCorrection-v1.html

Absorption correction algorithms available in MANTID

https://docs.mantidproject.org/nightly/algorithms/AbsorptionCorrection-v1.html


“When you have eliminated all which is impossible, then 
whatever remains, however improbable, must be the truth.”

― Arthur Conan Doyle, The Case-Book of Sherlock Holmes 


