

Interaction of Xrays and Neutrons with Materials

by

Roger Pynn Indiana University and Oak Ridge National Lab

Interaction Mechanisms

- Neutrons interact with atomic nuclei via very short range (~fm) forces.
- Neutrons interact with unpaired electrons via magnetic dipole interaction.
- X-rays interact with electrons via an electromagnetic interaction

Thermal Neutrons, 8 keV X-Rays & Low Energy Electrons:- Penetration in Matter

Note for neutrons:

- H/D difference
- Cd, B, Sm
- no systematic Z dependence

For x-rays:

• decreasing penetration as Z increases

Comparison on Neutron & X-Ray Scattering by Various Elements

Element	Neutrons (10 ⁻¹² cm)	X-rays (10 ⁻¹² cm)	Electrons (Z ²)	
¹ H	-0.374	0.28	1	0
² H (D)	0.667	0.28	1	0
С	0.665	1.67	6	
Ν	0.940	1.97	7	
0	0.580	2.25	8	
Р	0.520	4.23	15	

Types of Interaction

- Neutrons interacting with nuclei
 - Absorption by nuclei cross section (i.e. absorption probability) for thermal neutrons usually $\sim 1/v$, resonances at high energy (> keV)
 - Coherent scattering scattering from different nuclei add in phase
 - Incoherent scattering random phases between scattering from different nuclei
- Neutrons interacting with magnetic fields
 - Magnetic dipolar interaction scattering from magnetic field due to unpaired electrons – coherent
- X-rays interacting with electrons
 - Photoelectric absorption x-rays kicks electron from shell to continuum
 - Leads to fluorescent X-ray emission when hole in shell is filled from outer shell
 - Goes as $1/E^3$ but with sharp steps at shell energies when new channel opens
 - Thomson scattering elastic and coherent
 - Compton scattering inelastic and incoherent

The Neutron has Both Particle-Like and Wave-Like Properties

- Mass: $m_n = 1.675 \times 10^{-27} \text{ kg}$
- Charge = 0; Spin = $\frac{1}{2}$
- Magnetic dipole moment: $\mu_n = -1.913 \ \mu_N$
- Nuclear magneton: $\mu_N = eh/4\pi m_p = 5.051 \times 10^{-27} J T^{-1}$
- Velocity (v), kinetic energy (E), wavevector (k), wavelength (λ) , temperature (T).
- $E = m_n v^2/2 = k_B T = (hk/2\pi)^2/2m_n$; $k = 2 \pi/\lambda = m_n v/(h/2\pi)$

	<u>Energy (meV)</u>	<u>Temp (K)</u>	Wavelength (nm)
Cold	0.1 – 10	1 – 120	0.4 – 3
Thermal	5 – 100	60 – 1000	0.1 – 0.4
Hot	100 – 500	1000 – 6000	0.04 – 0.1

 λ (nm) = 395.6 / v (m/s) E (meV) = 0.02072 k² (k in nm⁻¹)

X-Rays also have Wave-Like and Particle-Like Properties

$$E = h\upsilon = hc / \lambda = (h / 2\pi)c(2\pi / \lambda) = \hbar ck = pc$$

Charge = 0; magnetic moment = 0; spin = 1

<u>E (keV)</u>	λ <u>(Å)</u>
0.8	15.0
8.0	1.5
40.0	0.3
100.0	0.125

Typical interatomic distance in a crystal is 3.5 Å

Brightness & Fluxes for Neutron & X-Ray Sources

	Brightness (s ⁻¹ m ⁻² ster ⁻¹)	dE/E (%)	Divergence (mrad ²)	Flux (s ⁻¹ m ⁻²)
Neutrons	10 ¹⁵	2	10 x 10	10 ¹¹
Rotating Anode	10 ¹⁶	3	0.5 x 10	5 x 10 ¹⁰
Bending Magnet	10 ²⁴	0.01	0.1 x 5	5 x 10 ¹⁷
Wiggler	10 ²⁶	0.01	0.1 x 1	10 ¹⁹
Undulator (APS)	10 ³³	0.01	0.01 x 0.1	10 ²⁴

Flux = brightness * divergence; brilliance = brightness / energy bandwidth

Brilliance of the X-ray beams (photons/s/mm²/mrad²/0.1% BW)

Why Synchrotronradiation ?

Intensity !!!

Brugger Plot

Redrawn 2009