

- 1) Free Electron Lasers
 - 1) What is an FEL?
 - 2) Status of FEL's worldwide vs Storage Rings
- 2) FELs vs. Synchrotron Sources:
 - 1) Understand the Peak Brilliance graphs
 - 2) LCLS
 - 3) In depth comparison from the experimentalist point of view
- 3) Experimental Strategies to use FELs
- 4) What's coming next?

1.1) What is a Free Electron Laser?

Synchrotrons

Ultimate e-recycling

Storage Ring

- MANY Insertion Devices (ID) & BMs
- ≥ 1 instrument per Undulator
- Independent operation of ID's

Free Electron Lasers

Pulsed & single path

Linear accelerator

- Very limited number of Undulators (1 to 5)
- ≥ 1 instruments per undulator
- Almost one instrument at a time

1.1) What is a Free Electron Laser?

SLAC

Synchrotrons

Typ. 1 to 5 meter long

Free Electron Lasers

VERY long: typ. >100 meters Small e-beam emittance

1.1) Reading Suggestions: What is a Free Electron Laser?

SLAC

Eur. Phys. J. H

DOI: 10.1140/epjh/e2012-20064-5

THE EUROPEAN PHYSICAL JOURNAL H

Vol **35** (5), pp 659-708 (2012)

The history of X-ray free-electron lasers

C. Pellegrini^{1,2,a}

REVIEWS OF MODERN PHYSICS, VOLUME 88, JANUARY-MARCH 2016

The physics of x-ray free-electron lasers

C. Pellegrini

Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 90095, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

A. Marinelli

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

S. Reiche

Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

1.2) FELs and Synchrotrons Worldwide

INTRODUCTION TO WORLDWIDE LIGHT SOURCE FACILITIES

Synchrotron Radiation Facilities and FEL facilities

FEL vs. SR

- 1) Free Electron Lasers
 - 1) What is an FEL?
 - 2) Status of FEL's worldwide vs Storage Rings
- 2) FELs vs. Synchrotron Sources:
 - 1) Understanding generations and the Brilliance graphs
 - 2) LCLS
 - 3) In depth comparison from the experimentalist point of view
- 3) Experimental Strategies to use FELs
- 4) What's coming next?

2.1) FEL vs. SR: Understanding Generation and Peak Brilliance

"... it is clearly a misnomer to classify an X-ray FEL as a `fourth-generation light source'. The fourth-generation light sources are now clearly identified as diffraction-limited storage ring sources ..."

White, Robert, Dunne, J. Synch. Rad. 22 (3), pp 472-476 (2015)

Pay Attention to the Units!

 $s mm^2 mrad^2 (0.1\% BW)$

Ballpark	SR	FEL	Gain
S	~100ps	~50fs	x 2.10 ³
mm	~2	~0.05	x 0.5.10 ²
mrad	~30-50	~1	x 4.10 ³
(0.1% BW)	~ 2-3%	~0.1%	x 0.3.10 ²

Shintake, T. (2007). Proc. of IEEE PAC, pp 89 - 93.

2.1) FEL vs. SR: Understanding Generation and Average Brilliance

SLAC

Pay Attention to the Units!

	Photon		
S	mm^2	$mrad^2 (0.1\% BW)$	

Ballpark	SR	FEL	Gain	
S	~100ps	~50fs	x 2.10 ³	
mm	~2	~0.05	x 0.5.10 ²	
mrad	~30-50	~1	x 4.10 ³	
(0.1% BW)	~ 2-3%	~0.1%	x 0.3.10 ²	

x 0.5.10² diffraction limit

2.1) FEL vs. SR: Big Picture

Pulse duration : typ. 50-100ps High repetition rate (100sMHz)

Pulse duration : typ. < 100fs Repetition rate ~50-100Hz

1mJ = 6.242 10¹² keV

1mJ @ 8keV ~ 7.8 10¹¹

1mJ @ 1keV ~ 6.2 10¹²

The average number of photon per second on a storage ring is similar to the number of photon on average per shot on a FEL

FEL vs. SR

- 1) Free Electron Lasers
 - 1) What is an FEL?
 - 2) Status of FEL's worldwide vs Storage Rings

2) FELs vs. Synchrotron Sources:

- Understanding generations and the Brilliance graphs
- 2) LCLS
- 3) In depth comparison from the experimentalist point of view
- 3) Experimental Strategies to use FELs
- 4) What's coming next?

2.2) LCLS

http://LCLS.slac.Stanford.edu

LCLS PARAMETERS			Unit
Linac	e-beam energy	2.5-16.9	GeV
	Length	~1	km
	Slice emittance	0.5-1.2	μm
Ä	Active Length	~112	m
Undulator	Period	30	mm
ndu	К	3.5	
Ō	Peak Field	1.25	Т
Typical SASE Parameters			
	Photon Energy (1st harm.)	0.28-12.8	keV
	Number Photons	~10 ¹²	ph/pulse
Ε	Rep. Rate	Up to 120	Hz
eal	Pulse Duration	~1-200	fs
B	Size (unfocused)	200-500	μm
X-ray Beam	Divergence	1-2	μrad
	Trans. Coherence	Full	
	Polarization	Horiz.	
	Bandwidth Δλ/λ	0.1	%

White, Robert, Dunne, J. Synch. Rad. 22 (3), pp 472-476 (2015)

FEL vs. SR

- 1) Free Electron Lasers
 - 1) What is an FEL?
 - 2) Status of FEL's worldwide vs Storage Rings

2) FELs vs. Synchrotron Sources:

- 1) Understanding generations and the Brilliance graphs
- 2) LCLS
- 3) In depth comparison from the experimentalist point of view
- 3) Experimental Strategies to use FELs
- 4) What's coming next?

What are the important parameters?

- 1 Flux
- ② Collimated beam
- 3 Beam position
- 4 Intensity
- 5 Pulse durations
- 6 Temporal fluctuations
- ⑦ Energy spectrum
- 8 Coherence

Highly **Stable** (intensity, position, pointing, energy) and partially coherent storage rings sources with high brilliance in the hard X-ray Regime

Parameter	Comment		
Time Structure	Continuous		
Intensity		Stable	
Position/ pointing		Stable	•
Energy spectrum		Stable	
Timing		Stable	
Coherence	Partial		

2.3) Free Electron Lasers

Measuring Ultra-Fast phenomena (< 100ps)

Parameter	Storage Ring	FEL
Time Structure	Continuous	Pulsed
Intensity	Stable	Fluctuations
Position/ pointing	Stable	Fluctuations
Energy spectrum	Stable	Fluctuations
Timing	Stable	Fluctuations
Coherence	Partial	Full

2.3) Free Electron Lasers: X-ray Scattering

SLAC

 Experiments use at least one of the FEL beam properties

Some experiments use more than one technique simultaneously or sequentially

Quizz: meaning of the acronyms

- FEL sources provide unprecedented peak brilliance
- This originates from the pulsed nature of these sources.
- One typically gets per shot what one gets per second on a SR

(2) COLLIMATION

Storage Ring

Typ. beam size @40-50m 2-3 x0.5-1mm (h,v)

Typ. divergence high-β 30 x 15µrad (h,v)

(example : Troika ID10A at the ESRF)

Typ. beam size @200-400m 0.5-1 x0.5-1mm (h,v)

Typ. Divergence 1-2 x 1-2µrad (h,v)

MOIANB01 Proceedings of BIW10, Santa Fe, New Mexico, US H. Loos et al.

OPERATIONAL PERFORMANCE OF LCLS BEAM INSTRUMENTATION

It can have a huge impact on X-ray optics (e.g. focusing)

Storage Ring

Rock Stable!

FEL XPP Instrument

Beam fluctuates in position (>10% of its size)

(4) INTENSITY

Storage Ring

Rock Stable

With Or Without Top-up

FEL

Drastic difference between pink and mono beam

Courtesy of XPP

Storage Ring

Rock Stable!

With Or Without Top-up

FEL

Intrinsic intensity fluctuation coming from the SASE process itself, in addition of machine instability and special behavior in monochromatic beam

SLAC

Storage Ring

Pulse duration : typ. 50-100ps High repetition rate (100sMHz)

FEL: LCLS

Pulse duration : typ. < 100fs Repetition rate ~50-100Hz

-12<u>L</u>

X-ray - laser delay / ps

(7) E-spectrum

SLAC

Storage Ring

Access to high Energies with 3rd harmonic Stable and well define energy spectrum 1st harmonic width: 1-4%

FEL

Access to high Energies with 3rd harmonic 1st harmonic width : 0.1-0.2% (<dE/E>=0.7%)

Fluctuating spectrum : e-beam jitter and structure

"seeding" will fix this

(8) Degree of Coherence

Storage Ring

Limited degree of Coherence

Slit down the beam to typ. 20x20 micron beams to extract the coherent fraction of the beam.

■ Figure 18-2 Airy fringes from a 5 \times 5 μm^2 slit, recorded with λ = 1.54 Å radiation at 1.5 m from the slit. The visibility V of the fringes can be quantified by V = ($I_{max} - I_{min}$)/($I_{max} + I_{min}$), where I_{max} is a fringe maximum and I_{min} is an adjacent minimum

FEL

Day to day operation

Something very different from SR sources, we have:

"BAD" days

- a little less than 1mJ
- Very large intensity fluctuations

Gent Aug. Craphs

Gent Aug. C

and

- more than 1.5mJ up to 5 mJ
- 10-15% intensity fluctuation and no loss at all

3) FEL Experimental Strategies

- 1) Free Electron Lasers
 - 1) What is an FEL?
 - Status of FEL's worldwide vs Storage Rings
- 2) FELs vs. Synchrotron Sources:
 - Understand the Peak Brilliance graphs
 - 2) LCLS
 - 3) In depth comparison from the experimentalist point of view
- 3) Experimental Strategies to BEST use FELs
- 4) What's coming next?

3.1) Normalizing, Filtering, Binning

SLAC

Each X-ray Pulse is UNIQUE

X-ray - laser delay / ps

Each X-ray pulse fluctuates in many ways

3.2) Pump- Probe (c.f. L. Young)

Pump-Probe: evolution of relative signal with X-ray probe at different time delays Δt after excitation (probe)

- Reproducibility of the excited state
- Reproducibility of the sample if damaged
- Ability to synchronize two short pulses
- **Correct for timing jitter**

Let's correct a misconception! Most samples survive a single shot FEL beam

If all photons are focused in a very small spot size (<2-5 micron) nothing survive a single shot

Neutze et al., Nature **406**, pp752 (2000)

"Diffract-Before-Destroy" take advantage of the peak power to obtain information before the systems reacts to the X-ray probe

3.4) Sample Delivery

Ability to change the sample when damage by the FEL

Optimized for each sample

LIQUIDS

4) What is coming next: LCLS-II and LCLS-II-HE

SLAC

- 1) Free Electron Lasers
 - 1) What is an FEL?
 - 2) Status of FEL's worldwide vs Storage Rings
- 2) FELs vs. Synchrotron Sources:
 - Understand the Peak Brilliance graphs
 - 2) LCLS
 - 3) In depth comparison from the experimentalist point of view
- 3) Experimental Strategies to BEST use FELs
- 4) What's coming next?

4) What is coming next: LCLS-II and LCLS-II-HE

LCLS-II:

- CW-SCRF linac (4 GeV) in 1st km of linac
- Two new tunable undulators

SCRF Cryo-module

- Repetition rate up to 1 MHz
- Photon energy reach 25 keV (120 Hz)
- Stability, coherence (seeding)

LCLS-II-HE: More cryomodules

Increase X-ray photon energy

Free Electron Lasers: using X-rays for Science

SAXS

PUMP

XES

Diff

XPCS

CXDI

XANES

EXAFS

XAS

"Linac Coherent Light Source: the first five years", Rev. Mod. Phys. 88, 015007 (2016)

Atomic & **Materials** High Energy Chemistry Molecular Life Sciences Density Science **Dynamics** Relying on the long experience of synchrotron Storage Ring sources

- Experiments use at least one of the FEL beam properties
- Ideal for ultrafast dynamics, radiation sensitive samples, pump-probe (optical, THz, Field, etc.)
- Some experiments use more than one technique simultaneously or sequentially
- More detailed science examples w/ L. Young