Scattering from multiple atoms Diffraction from a crystal

We start with a generic paralepidid

The shape of our 'box' is determined by 6 parameters known as the **lattice parameters**.

These determine the **unit cell** and also help us think about diffraction.

 $\begin{array}{l} a \neq b \neq c \\ \alpha \neq \beta \neq \gamma \end{array}$

Procedure for drawing a crystallographic planes

- 1. The indices in (*hkl*) define the plane.
- 2. Find the intercepts of a plane with the cell parameters *a*, *b*, *c*.
- 3. Take the reciprocal of the fractions to get the Miller indices.

$$\frac{1}{h}a \qquad \frac{1}{k}b \qquad \frac{1}{l}c$$

Other notes:

- They are not the same thing as zone axis, which is given by [*uvw*], note the square brackets.
- We indicate Miller indices by three whole numbers and the symbols (hkl)

Labeling the faces of our unit cell

Crystallographic planes beyond the unit cell

Crystallographic planes beyond the unit cell

From the (011) planes, let's find the vector G^*_{011}

First find the spacing between the planes, which we call the dspacing

Building the reciprocal lattice

7

Reciprocal space lattice

$$G_{hkl}^{*} = ha^{*} + kb^{*} + lc^{*}$$

$$a^{*} \qquad (010)$$

$$(100)^{*} \qquad (110)$$

$$G_{110}^{*} = G_{100}^{*} + G_{010}^{*}$$

Diffraction and Bragg's law

G_{hkl} is called a reciprocal lattice vector (node denoted hkl)

h, k and l are called Miller indices

$$\vec{G}_{hkl} = \vec{Q}$$

$2\pi n$	$4\pi\sin\theta$
$\overline{d_{hkl}}$ –	λ

 $n\lambda = 2d_{hkl}\sin\theta$

Relationship between real and reciprocal space

Beam of neutrons or x-rays scattered from planes

Bragg reflections from crystallographic planes

Centering operations lead to systematic absences

{001} family of planes are systematically absent

Other allowed reflections in fcc lattice

Ewald sphere for different wavelengths

The Ewald sphere and scattering triangle

