Introduction to Small Angle X-ray Scattering for Nanomaterials

Tao Li (tli4@niu.edu; taoli@anl.gov)

Chemistry Department of Northern Illinois University Advanced Photon Source of Argonne National Laboratory (joint)

Thanks to Xiaobing Zuo, Byongdu Lee, Pete Jemian, Jan Ilavsky, Randall Winans for some slides.

Outline

- **Introduction**
- **Experimental Setups**
- **Fundamentals of X-ray Scattering**
- **Theory and Applications of Small Angle X-ray Scattering**
- **Applications**

What Does Small Angle Scattering Measure?

- Measuring the size range from 1 to 100 nm
- Size and distribution, shape, particle distance, compositions, volume fractions

Tao Li, A. Senesi, B. Lee* *Chem. Rev.*, **2016**, *116*, 11128 - 11180.

Length Scales Probed by SAS and Other Characterization Techniques

1. X-ray Scattering Setup

- **Storage-Ring synchrotron**
- **X-ray scattering setup**

X-ray Scattering Setup Configuration

Real space vs Reciprocal space

- Properties
- Unit in length -1
- Length in reciprocal space is 1/length in real space
- Volume of reciprocal space is 1/volume in real space

(Solution) X-ray Scattering Data

When do you need synchrotron x-ray source?

- 1. High flux: high background exp
- 2. Small beam size: small amount of sample, etc
- 3. Fast data collection: in-situ, fast kinetics

Lab source vs SR

Figure 3. SAXS data of BCC SL of 15nm gold spherical particles linked with DNA. The same sample were measured with APS and Lab sources.

New SAXS/WAXS Setup at Beamline 12ID-B of Argonne

- From 1 to 150 nm
- High flux, one measurement less than 0.1 s
- In situ SAXS study : high temperature (up to 1500°C) and high pressure (up to 20,000 psi)
- Element specific information from ASAXS
- Can be combined with many other techniques such as IR and other spectroscopy

Fundamentals of X-ray Scattering

- **X-ray scattering and interference**
- **Form factor: size & shape**
- **Size polydispersity**
- **Structure factor**

Atomic Form Factor

Electron cloud in atoms has radial density distribution $\rho(r)$

qr

 10

 $\widehat{\mathscr{E}}$

 0.1

 $= 4\pi \int \rho(r) r^2 \frac{\sin(qr)}{ar} dr$

 $f(q) = 4\pi \int \rho(r) r^2 \frac{\sin(qr)}{r^2}$

Atomic form factors are fundamental parameters for X-ray techniques.

 $(q) = 4\pi \int \rho(r) r^2$ π | ρ

- *f(0)=Z* : the total electron of the atom, scattering length.
- Atoms with higher Z will scatter stronger.

Data taken from **International Tables for Crystallography**, Vol. C, Table 6.1.1.1

D

Polydispersity: Size Distribution

Scattering for an ensemble with different sizes:

Sphere radii with Gaussian distribution

■ Size polydispersity smears/dampens fine features in scattering profile.

Spheres of different sizes

"Long & thin" cylinder

Particle Correlation: Structure Factor

Dilute, randomly distributed particles:

 $I(q) = NP(q)$

Correlated particles:

 $I(q) = NP(q)S(q)$

S(q) structure factor

Structure Factor: Common Spacing(s) between Scatterers

- g(r): radial particle distribution function
- \blacksquare Low concentration, S(q)=1
- Higher concentration, S(q) oscillates about 1

Theory and Applications of SAXS

- **Guinier Approximation**
- **Porod Law**
- **Invariant**
- **Hierarchical structural Information**

Guinier Equation

When $q\rightarrow 0$,

$$
I(q) \cong I(0) \exp(\frac{-R_g^2 q^2}{3})
$$

Rg : radius of gyration *I(0)*: forward scattering

André Guinier (1911-2000)

To get reliable Guinier plot / R_g analysis:

- ρ q_{max}^{*}R_g<1.3 for globular; <0.8 for enlongate

→ q_{min} ≤ π/D_{max}
- $q_{min} \leq \pi/D_{max}$

Multiple (\ge 5???) data points in linear fashion

Guinier Plot: Data Evaluation & Sample Condition

Putnam, D., et al. (2007) Quart. Rev. Biophys. 40, 191-285.

Porod Law

- Can provide morphology information
- May not be valid in atomic length region
- Could be misled by inaccurate background subtraction

Porod Invariant and Porod Volume

Porod Invariant Q:

$$
Q \equiv \int_0^\infty q^2 I(q) dq = 2\pi^2 (\Delta \rho)^2 V
$$

 $I(0) = (\Delta \rho V)^2$

V

For uniform particles:

Porod volume:

- The invariant measures the total electrons, does not depend on morphology.
	- The volume of a molecule can be estimated solely from scattering data.
	- Calculation of particle volume does not require absolute data scaling.

Q

I

 $=\frac{2\pi^2 I(0)}{2}$

Anatomy of SAXS Profile

Pair Distance Distribution Function (PDDF)

$$
p(r) = \frac{r^2}{2\pi^2} \int_0^\infty q^2 I(q) \frac{\sin qr}{qr} dq \qquad \text{--- reverse FT of I(q)}
$$

■ The PDDF of a molecule is the (net-electrons and distance) weighted atom-pair distance histogram.

Data range

 $10²$

 $10¹$

 10

 0.1

 $q(\AA^{-1})$

 $\boxed{\texttt{q}}$

Combination of SAXS & PDDF for Shape Determination

Adopted from: Svergun, D., Koch, M. (2003) Rep. Prog. Phys. 66, 1735-1782.

SAXS Instruments at 12ID

Setup

Heating up to 1500 °C

Heated capillary flow cell

GISAXS cell for high temperature and pressure reactions

Combined SAXS with other technique

SAXS and SANS

In situ SAXS/WAXS

SAXS of Au-DNA Superlattice

Science 2011,334, 204– 208 31

P(r) of dimmer structure

Lithium Ion Battery

Lithium ion batteries are powering the world.

The Nobel Prize in Chemistry 2019

III. Niklas Elmedhed. © Nobel Media.

John B. Goodenough

Prize share: 1/3

III. Niklas Elmedhed, © Nobel Media.

M. Stanley Whittingham

Prize share: 1/3

III. Niklas Elmedhed. © Nobel Media.

Akira Yoshino

Prize share: 1/3

Electrolytes

How to characterize the electrolyte in the solution?

K. Qian, R. Winans, **Tao Li*.** *Advanced Energy Materials,* **2021***,* 2002821*.* K. Qian, Y. Liu, D. Gosztola, H. Nguyen, **Tao Li***. *Energy Storage Materials,* **2021***, 41,* 222-229*.*

Northern Illinois
University

Microscopic View of the Ethylene Carbonate Based Lithium-Ion Battery Electrolyte by SAXS

• Cryo-EM, MD simulation: structures

Z. Feng, E. Sarnello, **Tao Li,** * L. Cheng.* *J. Electrochem. Soc.* **2019,** 166, 2, A47-A49.

Figure. Experimental and calculated SAXS data for 20 m LiTFSI in water.

(Left) Peaks highlighted with black arrows indicates TFSI- aggregates. (Right) MD simulations show the heterogeneous structure of the electrolyte comprises percolating networks of ion and water domains consistent with experimental SAXS data.

SAXS/WAXS Study of LiTFSI Solvation Structure

X. Liu, Z. Yu, E. Sarnello, K. Qian, S. Seifert, R. E. Winans, L. Cheng*, **Tao Li**.* *Energy Materials Advances*, **2021**, 7368420.

Liu,# S.-C.Lee,# S. Seifer, R. E.Winans, L. Cheng, Y Z,* **Tao Li.*** *Energy Storage Materials* **2022**, 696-703.

SAXS and SANS Study of LiTFSI Solvation Structure

Peak a,c: TFSI – solvated structure

Peak b: TFSInetwork (water molecules act as bridging bond)

X. Liu,# S.-C.Lee,# S. Seifert, L. He, R. E.Winans, C. Do, Y Z,* **Tao Li.*** *Chemistry of Materials,* **2023***,* 35,2, 2088-2094.

SAXS and SANS: Decomposition

X. Liu,# S.-C.Lee,# S. Seifert, L. He, R. E.Winans, C. Do, Y Z,* **Tao Li.*** *Chemistry of Materials,* **2023***,* 35,2, 2088-2094.

SAXS/WAXS Study of Different Anions

X. Liu,# S.-C.Lee,# S. Seifert, R. E.Winans, L. Cheng, Y Z,* **Tao Li.*** *Energy Storage Materials* **2022**, 696-703.

SAXS/WAXS Study of Different Anions Northern Illinois
University

MD simulation results reveal that the formation of anion networks starts at around 20% of the salt volume fraction for all imide-based lithium salts aqueous solutions.

43 X. Liu, Z. Yu, E. Sarnello, K. Qian, S. Seifert, R. E. Winans, L. Cheng*, **Tao Li**.* *Energy Materials Advances*, **2021**, 7368420.

Y. Zhou, T. Juran, X. Liu, K. Han, H. Wang, K. Mueller, K. Xu, L. Curtiss, **Tao Li***, L. Cheng*. *Energy & Environmental Materials,* **2022***, 5,* 295-304.

SAXS of LITFSI in Different Solvents Northern Illinois
University

H **NIU**

K. Qian, S. Seifert, R. Winans, **Tao Li***. *Energy and Fuel* , **2021**, 35, 23, 19849–19855

Morthern Illinois Molecular Aggregation in Catholyte Redoxmer Solutions

Collaborator: Shkrob (ANL), Odom (Kentucky), Ewoldt (UIUC), Assary (ANL), L. Zhang (UIUC), Carino (ANL)

Correlation peaks indicative of redoxmer clustering are observed in concentrated solutions of some redoxmers but not the others, depending on *subtle* structural variations.

- **SAXS studies demonstrate aggregation and microscopic phase separation in crowded redoxmer solutions**
- **Aggregation is shown to affect stability of charged redoxmers**
- **It strongly affects viscosity and conductivity**

Tao and Erik as co-author

- *1. Journal of Physical Chemistry B,* **2020***, 124, 45,* 10226-10236;
- *2. Journal of Physical Chemistry B,* **2020***, 124, 46,* 10409-10418;
- *3. Journal of Molecular Liquid,* **2021,** *334*, 116533.
- *4. Journal of Power Sources,* **2021***, 491,* 229506*.*

Electrolytes

Northern Illinois What we have learned about solvation structures of electrolytes with X-ray scattering

E Supported Metal Catalysts by Atomic Layer Deposition Northern Illinois
University

Lu, Junling; Elam, Jeffrey W.; Stair, Peter C. Accounts of Chemical Research (2013), 46(8), 1806-1815

ALD Overcoated Catalyst with Enhanced Stability Northern Illinois **University**

Lu J, et al. Chem. Mater. 2012, 24, 2047−2055 Lu J, et al. Science, 2012, 9, 1205−1208

- **Dramatically improved yield and lifetime with ALD overcoat**
- **Without overcoat, coke formed in <30 min, zero yield**
- **With overcoat, virtually no coking, >20% yield**
- **Lifetime enhancement: >100x**

45c Al_2O_3 Over-coating on Pd/Al₂O₃ Catalyst 前 **NIU** Northern Illinois
University

Collaborated with Peter Stair, Northwestern University

Science, 2012, 9, 1205−1208

The fitting shows that the average particle size is 6.7 nm, consistent with BJH Model data 7.1 nm.

Pore Size of 45ALD/Cu/ γ-Al₂O₃ -700 Support

52 *Tao Li as co-author. ACS Catalysis,* **2020***, 10 (23),* 13957-13967.

Combined SAXS/WAXS of TiO₂ Overcoat Northern Illinois
University

5 nm ALD TiO² overcoat on spherical nanodur Heat in air 20^oC/min to 1000^oC

E. Sarnello, Z. Lu, S. Seifert, R. Winans**, Tao Li***. *ACS Catalysis*, **2021**, *11*, 2605-2619.

In Situ SAXS/XAS of Al_2O_3 Overcoat on Nanodour

Integrating Photocatalysis and Thermocatalysis to Enable Efficient Dry Reforming of Methane (DRM)

55 Z. Du, F. Pan, E. Sarnello, X. Feng, Y. Gang, **Tao Li**, Y. Li*. *Journal of Physical Chemistry C* **2021**, in press Collaborator: Ying Li (TAMU) P. Fu, E. Sarnello, **Tao Li*,** Y. Li*. *Appl. Catal. B.*, **2020**, *260*, 118189. L. Fang, Z. Feng, L. Cheng, R. Winans, **Tao Li***. *Small Methods*, **2020**, 2000315.

12 ID-C

Multiple Techniques to Observe Structure under Real Conditions *(If you can do it in the lab, we can do it on the beamline)*

Five sectors provide a suite of in-situ techniques including X-ray scattering and spectroscopy at: 1-ID (high energy SAXS/WAXS (PDF)) 9-ID-D(USAXS/SAXS) 9-BM, 20-BM (XAS) 10-ID (XAS) 11-BM (Hi res powder diff) 11-ID-B,C (PDF) 12-BM (XAS/SAXS) 12-ID-B, C (SAXS/WAXS, and GISAXS/GIWAXS) Also - Imaging and Microscopy (2-BM, 32-ID-BC) Upgraded Upgrading

X-ray scattering and spectroscopy combined with FTIR and Raman to study in situ catalysis on a flat surface.

Software and useful website

http://smallangle.org/content/Software

- Fit2D or Nika for data reduction.
- SASfit, Irena, SasView
- Crysol
- GIXSGUI and FitGISAXS

Irena and Nika [software course](https://small-angle.aps.anl.gov/future-courses#IrenaNika) [Beyond Rg](https://small-angle.aps.anl.gov/future-courses#BeyondRgMaterials) Materials [Beyond Rg](https://small-angle.aps.anl.gov/future-courses#BeyondRgBio) Bio [BioSAS: Advanced Applications](https://small-angle.aps.anl.gov/future-courses#BioSAS)

THANK YOU

