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Surface & Interface Scattering – What can be measured?

• Surface and interface structure 
– Atomic level positions of atoms at a surface or interface
⁻ Growth and dissolution mechanisms (kinetics)
⁻ Structure and binding modes of adsorbates
⁻ Structure reactivity relationships

• Interface electron density profiles @ the atomic 
scale
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Why use x-rays to Study Surfaces and Interfaces

• Advantages
– Large penetration depth allows for in-situ measurements

• Liquid water, controlled atmospheres, growth chambers, hazardous 
materials (i.e. radioactive)

• Provides access to buried interfaces

– Kinematic scattering, simplifies the analysis

• Disadvantages
– The generally weak signals requires a synchrotron source
– Systems need to be well ordered and low roughness
– Intense x-ray exposure can alter the system 
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Double hydroxyl, double water terminated 
interface with significant atom relaxations

The Results: Goethite – FeOOH (100) 

(H2O) - (H2O) - OH2 – Fe – O – O – Fe - R

S. Ghose et al.  Geochim. Cosmochim. Acta 74, 1943-1953 (2010)

Hydrated goethite (α-FeOOH) (100) interface structure
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Diffraction – Theory

Bragg’s Law
𝑛𝑛𝜆𝜆 = 2d sin𝜃𝜃Constructive interference when:
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Diffraction – Theory
The scattered intensity into the detector is proportional to the square 
modulus of the Fourier transform of the electron density
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Diffraction – Theory

ik rk

X-ray
Source

(plane wave)

θ2

sample

Q

The instrument measures Q in the lab 

Where, 𝑸𝑸 = 𝒌𝒌𝑟𝑟 − 𝒌𝒌𝑖𝑖 𝒌𝒌𝒓𝒓 = 𝒌𝒌𝑖𝑖 =
2𝜋𝜋
𝜆𝜆

𝑸𝑸 = �𝑸𝑸 2
2𝜋𝜋
𝜆𝜆

sin ⁄2𝜃𝜃 2

The scattering vector diagram gives: 

𝒌𝒌𝑖𝑖

𝒌𝒌𝑟𝑟
2𝜃𝜃

⁄2𝜃𝜃 2 𝑸𝑸 =
4𝜋𝜋
𝜆𝜆

sin ⁄2𝜃𝜃 2



University of Chicago 9July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Diffraction – Theory

(HKL) defines a plane with intercepts:
LKH
cba   ,  ,

b

a

d(H=1,K=0)

d(H=0,K=1)

d(H=1,K=1)



HKLHKL 1/d    || =G )(  HKL⊥,

***          cbaG LKH ++=

( )***         2 cbaQ LKH ++= π

Real Space Planes 
(Miller Indices H K L)

L=0

𝒂𝒂∗ = 2𝜋𝜋
𝒃𝒃 × 𝒄𝒄

𝒂𝒂 � 𝒃𝒃 × 𝒄𝒄 𝒃𝒃∗ = 2𝜋𝜋
𝒄𝒄 × 𝒂𝒂

𝒂𝒂 � 𝒃𝒃 × 𝒄𝒄
𝒄𝒄∗ = 2𝜋𝜋

𝒂𝒂 × 𝒃𝒃
𝒂𝒂 � 𝒃𝒃 × 𝒄𝒄

a*

b*
(1,0)

(1,1)(0,1)

(1,-1)(0,-1)(-1,-1)

(-1,0)

(-1,1)

G(1,2)

G(1,1)

Reciprocal Space Points 
(Miller Indices H K L)
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Diffraction – Theory

Rewrite rn from the master equation as:

R
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rk
Q

n3

n2

(xyz)  )nn(n  j321cn rRr +=

rj is the position of the jth atom in the unit cell, 
expressed in terms of its fractional coordinates 
(xyz):

cb aR  n    n    n  )nn(n 321321c ++=

Rc is the origin of the (n1n2n3) unit cell 
w/r/to some arbitrary “center”:

Scattering from a crystal consisting of collection of unit cells

Where a, b, and c are vectors 
describing the unit cell

a
b

c
𝒓𝒓𝒋𝒋 = 𝑥𝑥𝑗𝑗𝒂𝒂 + 𝑦𝑦𝑗𝑗𝒃𝒃 + 𝑧𝑧𝑗𝑗𝒄𝒄
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Diffraction – Theory

Dot products in sum become simple to evaluate

( )***         2 cbaQ LKH ++= π

Using:

jcn     rQRQrQ •+•=•

) n    n     n(2  321c LKH ++=• πRQ

) z   y     x (2  j LKH ++=• πrQ

Location of the nth unit cell

Location of the atoms within a unit cell
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Diffraction – Theory
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Substitute for Q and rn in the master equation:

)()()(FE 321 LSKSHSc∝

Simplifying to:
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Diffraction – Theory

𝑆𝑆1(𝐻𝐻) = �
−(𝑁𝑁1−1)/2

(𝑁𝑁1−1)/2

𝑒𝑒𝑖𝑖2𝜋𝜋𝑛𝑛1𝐻𝐻 Using: 𝑘𝑘 = 𝑒𝑒𝑖𝑖2𝜋𝜋𝐻𝐻Where:�
−(𝑁𝑁1−1)/2

(𝑁𝑁1−1)/2

𝑘𝑘𝑛𝑛1 =
𝑘𝑘
𝑁𝑁1
2 − 𝑘𝑘−

𝑁𝑁1
2

𝑘𝑘
1
2 − 𝑘𝑘−

1
2

𝑆𝑆1(𝐻𝐻) =
𝑒𝑒𝑖𝑖𝜋𝜋𝑁𝑁1𝐻𝐻 − 𝑒𝑒−𝑖𝑖𝜋𝜋𝑁𝑁1𝐻𝐻

𝑒𝑒𝑖𝑖𝜋𝜋𝐻𝐻 − 𝑒𝑒−𝑖𝑖𝜋𝜋𝐻𝐻
=

sin(𝑁𝑁1𝜋𝜋𝐻𝐻)
sin(𝜋𝜋𝐻𝐻)

The lattice sums can be evaluation using sum the geometric series:

Results in:

lim
𝜀𝜀→0

𝑓𝑓(𝜀𝜀)
𝑔𝑔(𝜀𝜀)

= lim
𝜀𝜀→0

𝑓𝑓(𝜀𝜀)′

𝑔𝑔(𝜀𝜀)′

The behavior of the lattice sum when H is close to integer can be 
determined using L'Hôpital's rule:

The lattice sum then approaches:

𝑆𝑆1(𝐻𝐻) → 𝑁𝑁1 𝐻𝐻 → 𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑔𝑔𝑒𝑒𝑖𝑖as

lim
𝐻𝐻→𝑖𝑖𝑛𝑛𝑖𝑖

sin(𝑁𝑁1𝜋𝜋𝐻𝐻)
sin(𝜋𝜋𝐻𝐻)

= lim
𝐻𝐻→𝑖𝑖𝑛𝑛𝑖𝑖

cos(𝑁𝑁1𝜋𝜋𝐻𝐻)
cos(𝜋𝜋𝐻𝐻)

= 𝑁𝑁
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Diffraction – Theory
Scattering intensity at a Bragg point: Where HKL are integers:
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(1,1)(0,1)
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cWhere 𝐹𝐹𝑐𝑐 is the structure factor of the unit cell:
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Diffraction – Theory

𝐹𝐹𝑐𝑐 = �
𝑗𝑗=1

𝑚𝑚

𝑓𝑓𝑎𝑎,𝑗𝑗𝑒𝑒𝑖𝑖𝑸𝑸⋅𝒓𝒓𝒋𝒋 𝑒𝑒−𝑀𝑀𝑗𝑗

𝒓𝒓𝒋𝒋 = 𝑥𝑥𝑗𝑗𝒂𝒂 + 𝑦𝑦𝑗𝑗𝒃𝒃 + 𝑧𝑧𝑗𝑗𝒄𝒄

Q= 2𝜋𝜋(𝐻𝐻𝒂𝒂∗ + 𝐾𝐾𝒃𝒃∗ + 𝐿𝐿𝒄𝒄∗)

Q ⋅ 𝒓𝒓𝑗𝑗 = 2π(𝑥𝑥𝑗𝑗𝐻𝐻 + 𝑦𝑦𝑗𝑗𝐾𝐾 + 𝑧𝑧𝑗𝑗𝐿𝐿)

using:

The structure factor for the unit cell: 

(location of the jth atom in the unit cell)

(scattering vector in reciprocal space)

The dot product is then:

𝐹𝐹𝑐𝑐 = �
𝑗𝑗=1

𝑚𝑚

𝑓𝑓𝑎𝑎,𝑗𝑗𝑒𝑒𝑖𝑖2𝜋𝜋(𝑥𝑥𝑗𝑗𝐻𝐻+𝑦𝑦𝑗𝑗𝐾𝐾+𝑧𝑧𝑗𝑗𝐿𝐿) 𝑒𝑒−𝑀𝑀𝑗𝑗

Substituting into the structure factor equation gives:
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Diffraction – Theory
Example of a Single Crystal of alpha Iron- BCC Fe

a

a
a

a = b = c = 3.61Å

𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 90
(½ ½ ½)

(0 0 0)

Where:

𝐹𝐹𝑐𝑐 = 𝑓𝑓𝐹𝐹𝐹𝐹 𝑒𝑒𝑖𝑖2𝜋𝜋 0𝐻𝐻+0𝐾𝐾+0𝐿𝐿 + 𝑒𝑒𝑖𝑖2𝜋𝜋
1
2𝐻𝐻+

1
2𝐾𝐾+

1
2𝐿𝐿 𝑒𝑒−𝑀𝑀𝑗𝑗

Substituting the coordinates for 
the two atoms in the crystal:

𝐹𝐹𝑐𝑐 = 𝑓𝑓𝐹𝐹𝐹𝐹(𝑒𝑒−𝑀𝑀𝑗𝑗) 1 + 𝑒𝑒𝑖𝑖𝜋𝜋 𝐻𝐻+𝐾𝐾+𝐿𝐿

𝐹𝐹𝑐𝑐 = 𝐹𝐹 1 + (−1)(𝐻𝐻+𝐾𝐾+𝐿𝐿) ⇒ 2𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑖𝑖,𝐻𝐻 + 𝐾𝐾 + 𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
0, 𝑓𝑓𝑓𝑓𝑖𝑖,𝐻𝐻 + 𝐾𝐾 + 𝐿𝐿 𝑓𝑓𝑜𝑜𝑜𝑜

�𝑥𝑥

�𝑦𝑦

�̂�𝑧

Real Space 
(BCC)

𝐹𝐹𝑐𝑐 = �
𝑗𝑗=1

𝑚𝑚

𝑓𝑓𝑎𝑎,𝑗𝑗𝑒𝑒𝑖𝑖2𝜋𝜋(𝑥𝑥𝑗𝑗𝐻𝐻+𝑦𝑦𝑗𝑗𝐾𝐾+𝑧𝑧𝑗𝑗𝐿𝐿) 𝑒𝑒−𝑀𝑀𝑗𝑗
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Diffraction – Theory
Fe

a

a
a

a = b = c = 3.61Å

𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 90
(½ ½ ½)

(0 0 0)

Where:

�𝑥𝑥

�𝑦𝑦

�̂�𝑧

𝒂𝒂∗ = 2𝜋𝜋 𝑎𝑎2 ( �𝑦𝑦×�̂�𝑧)
𝑎𝑎3 �𝑥𝑥�( �𝑦𝑦×�̂�𝑧) 𝒃𝒃∗ = 2𝜋𝜋 𝑎𝑎2 (�̂�𝑧× �𝑥𝑥)

𝑎𝑎3 �𝑥𝑥�( �𝑦𝑦×�̂�𝑧) 𝒄𝒄∗ = 2𝜋𝜋 𝑎𝑎2 ( �𝑥𝑥× �𝑦𝑦)
𝑎𝑎3 �𝑥𝑥�( �𝑦𝑦×𝑧𝑧)

𝒂𝒂∗ = 2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝐹𝐹𝑐𝑐 = 𝐹𝐹 1 + (−1)(𝐻𝐻+𝐾𝐾+𝐿𝐿) ⇒ 2, 𝑓𝑓𝑓𝑓𝑖𝑖,𝐻𝐻 + 𝐾𝐾 + 𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
0, 𝑓𝑓𝑓𝑓𝑖𝑖,𝐻𝐻 + 𝐾𝐾 + 𝐿𝐿 𝑓𝑓𝑜𝑜𝑜𝑜

Real Space 
(BCC)

𝑎𝑎∗ = 𝑏𝑏∗ = 𝑐𝑐∗ = 1.74Å−1

𝒂𝒂∗ = 2𝜋𝜋
𝒃𝒃 × 𝒄𝒄

𝒂𝒂 � 𝒃𝒃 × 𝒄𝒄 𝒃𝒃∗ = 2𝜋𝜋
𝒄𝒄 × 𝒂𝒂

𝒂𝒂 � 𝒃𝒃 × 𝒄𝒄
𝒄𝒄∗ = 2𝜋𝜋

𝒂𝒂 × 𝒃𝒃
𝒂𝒂 � 𝒃𝒃 × 𝒄𝒄

𝒃𝒃∗ = 2𝜋𝜋
𝑎𝑎 �𝑦𝑦 𝒄𝒄∗ = 2𝜋𝜋

𝑎𝑎 �̂�𝑧

�𝑦𝑦

�𝑥𝑥

�̂�𝑧

(0 0 0)

(0 0 2)

(2 0 0)

(2 2 0)

(0 2 2)

(0 2 0)

(1 0 1)

(0 1 1)

(1 1 2)

(1 10)

(2 1 1)

(1 2 1)

(2 2 2)

𝑎𝑎∗
𝑎𝑎∗

𝑎𝑎∗

Reciprocal Space 
(FCC)

Example of a Single Crystal of alpha Iron- BCC

“Selection rule”
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Diffraction – On the Instrument

�𝑦𝑦

�𝑥𝑥

�̂�𝑧

(0 0 0)

(0 0 2)

(2 0 0)

(2 2 0)

(0 2 2)

(0 2 0)

(1 0 1)

(0 1 1)

(1 1 2)

(1 10)

(2 1 1)

(1 2 1)

(2 2 2)

𝑎𝑎∗
𝑎𝑎∗

𝑎𝑎∗

Reciprocal Space 
(FCC)

GSECARS 13BMC Diffractometer
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Diffraction – On the Instrument

𝑸𝑸

𝒌𝒌𝒊𝒊

𝒌𝒌𝒓𝒓

(002)

�𝑦𝑦

�𝑥𝑥

�̂�𝑧

(0 0 0)

(0 0 2)

(2 0 0)

(2 2 0)

(0 2 2)

(0 2 0)

(1 0 1)

(0 1 1)

(1 1 2)

(1 10)

(2 1 1)

(1 2 1)

(2 2 2)

𝑎𝑎∗
𝑎𝑎∗

𝑎𝑎∗

Reciprocal Space 
(FCC)



University of Chicago 20July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Diffraction – Single Crystal

Detector integrated signal 
during a wide angle 
rotation of the sample

Location of directed 
(un-reflected) 
beam.  

Single Crystal structure refinement Single Crystal diffraction data
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Diffraction – Theory

integer    as  N     
)πsin(

)πNsin(e)( 3
3

1)/2(N

1)/2(N

n 2 i
3

3

3

3 →→== ∑
−

−−

L
L

LLS Lπ

What about the scattering away from Bragg peak (slit functions)

0 0.5 1 1.5 2 2.5-10

-5

0

5

10

L

N=10

3S

L
0 0.5 1 1.5 2 2.5

0

20

40

60

80

100

N=102
3S

0 0.5 1 1.5 2 2.5

2000

4000

6000

8000

10000

L

N=1002
3S

• Intensity is small for non-integer 
values.  

• But its not zero if the xtal is a 
finite size!
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Diffraction – Theory

0 0.5 1 1.5 2
10-4

10-2

100

102

104

106

108

L

Intensity variation between Bragg peaks as a function of xtal dimension

2
3S

H=integer 
K=integer  

N3=1

kikr

Q
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Diffraction – Theory
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( )Lπ2sin1

• For N=1 no oscillations, 
scattering from a single layer.

• Oscillations for N>1 due to 
interference between x-rays 
scattering from the top and 
bottom

• Intensity variation follows the 
1/sin2 profile 

• At mid-point (anti-Bragg) the 
intensity is the same as from a 
single layer!

Intensity variation between Bragg peaks as a function of xtal dimension

2
3S

H=integer 
K=integer  

N3=1 N3=6

N3=30

L
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Crystal truncation rods (CTR)

Real 
space

Recip. 
space
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5mm

200µm

The crystal in this geometry 
appears infinite in-plane, and 
semi-infinite along the n3
direction

• The sharp boundaries of a finite size (i.e. small) crystal results in 
intensity between Bragg peaks

• However, for a large single crystal in the Bragg geometry a better 
model for a surface is a semi-infinite stacking of slabs 

n1

n2

n3
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∑∑∑
∞−

−

−−

−

−−

∝
0

n 2 i
1)/2(N

1)/2(N

n 2 i
1)/2(N

1)/2(N

n 2 i 3
2

2

2
1

1

1 eeeFE LKH
c

πππ

Return to the sums and take large N1 and N2 and sum n3 from 0 (the surface) to -∞

c = surface normal

a b0
-1

-2

1
2

0-1-2 1 2 3

0

-1

-2

-5

-4

-3

n1

n3

n2

(001) surface termination

Fctr = �
−∞

0

e𝑖𝑖2𝜋𝜋𝑛𝑛3𝐿𝐿 �
−∞

0

𝑘𝑘𝑛𝑛3 =
1

1 − 𝑘𝑘 , 𝑘𝑘 < 1Evaluate using:

Fctr = �
−∞

0

e𝑖𝑖2𝜋𝜋n3𝐿𝐿 =
1

(1 − e𝑖𝑖2𝜋𝜋 𝐿𝐿)

Fctr 2 =
1

1 − e𝑖𝑖2𝜋𝜋 𝐿𝐿
2

=
1

2 − (𝑒𝑒𝑖𝑖𝜋𝜋2𝐿𝐿 + 𝑒𝑒−𝑖𝑖𝜋𝜋2𝐿𝐿)
=

1
2(1 − cos 2𝜋𝜋𝐿𝐿 ) =

1
4𝑠𝑠𝑖𝑖𝑛𝑛2(𝜋𝜋𝐿𝐿)

Fctr 2 =
1

4𝑠𝑠𝑖𝑖𝑛𝑛2(𝜋𝜋𝐿𝐿)
Where:I ∝ N1

2N2
2 Fc(𝐻𝐻𝐾𝐾𝐿𝐿) 2 Fctr(𝐿𝐿) 2
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1/sin2(πl)

c*

a*
(200)

(201)

(202)

(20-1)

(20-2)

Q/2π L

Real 
space

(001) surface n̂

Recip. 
space

This is the origin of the crystal truncation rod: 
• For integer H and K the intensity is proportional to N1xN2xFctr(L)
• For non-integer H and K, S1 and S2 ~0, i.e. no sharp boundary in-plane
• Therefore, rods only occur in the direction perpendicular to the surface (n3 direction)

1/4sin2(πl)

Fctr lower at anti-Bragg than finite xtal. because 
the CTR only scatters from one side of the xtal.  
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surfbulkT EEE +=n3

0

1

-1

-2

-3

-4

surface cells

bulk cells

 )( F)( FNN  E CTRbulk c,21bulk LHKL=

 e )( FNN  E i2
surf c,21surf

 LHKL π=

The scattering between Bragg peaks along a CTR results from a sharp termination 
of  the crystal, and has a well defined functional form.  But what does that tell us 
about the interface structure? 

2
CTR

2
c

2
2

2
1 )(F )(F  NN I LHKL∝

Fc contains all the structure information (e.g. atomic coordinates).  But so far we’ve 
assumed all cells are structurally equivalent.  What if we add a surface cell with a 
different structure factor?  
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CTR Diffraction – Theory
Therefore final expression:

I ∝ N1
2N2

2 𝐹𝐹𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐻𝐻𝐾𝐾𝐿𝐿)𝐹𝐹𝑐𝑐𝑖𝑖𝑟𝑟(𝐿𝐿) + 𝐹𝐹𝑐𝑐,𝑠𝑠𝑏𝑏𝑟𝑟𝑠𝑠(HKL) 2

∑
=

•=
n

1j

M- i
j

jjeefF rQ
c

) z     y   x (2  (xyz)j LKH ++=• πrQ

L

• In the mid-zone between Bragg peaks FCTR ~1

• Therefore the “bulk” scattering and “surface” are of 
similar magnitude between Bragg peaks, i.e. sensitive 
to one bulk cell (modified by Fctr) and one surface cell 

• The “surface” and “bulk” sum in-phase or interfere if the  
Fsurf, is different from the Fbulk)

• Near Bragg peaks the surface signal is completely 
swamped:       IBragg/ ICTR > 106

Fctr = �
−∞

0

e𝑖𝑖2𝜋𝜋n3𝐿𝐿 =
1

(1 − e𝑖𝑖2𝜋𝜋 𝐿𝐿)

0 0.5 1 1.5 2
10

-2

10
0

10
2

10
4

10
6

10
8

1/4sin2(πl)
I
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Bragg peak

Anti-Bragg

Observe several orders of magnitude intensity variation with changes in surface:
• atomic site occupancy
• relaxation (position)
• presence of adatoms
• roughness 

Influence of surface structure:
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B.

Simulations of Pb/Fe2O3

A. Calculations as a function of 
surface coverage

B. Calculations as a function of the 
z-displacement (along the c-axis), 
the Pb occupation number is fixed 
at 0.3.  
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-3 -2 -1 0 1 2 3

0.1

1.0

10

L

σ = 0 Å2

σ = 1 Å2

σ = 50 Å2

σ = 10 Å2

Roughness “kills” rod intensity

Robinson β model

Scattering between different 
height features cause 
destructive interference   

Distinguish roughness from structure because 
roughness is uniform decrease in intensity

|𝐵𝐵 𝐿𝐿 |2 =
(1 − 𝛽𝛽)2

1 − 𝛽𝛽2 − 2𝛽𝛽 cos(𝜋𝜋𝐿𝐿)

𝛽𝛽 < 1

𝜎𝜎𝑟𝑟𝑚𝑚𝑠𝑠 =
𝛽𝛽
1
2

1 − 𝛽𝛽 𝑜𝑜⊥

When the roughness is too 
large the CTR is no longer 
measurable above 
background!
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CTR Diffraction – Theory
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Reciprocal Space (FCC)
With a (001) Surface
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CTR Diffraction – On the Instrumentation
GSECARS 13BMC Diffractometer
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Reciprocal Space (FCC)
With a (001) Surface
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(0 2 2)
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CTR Diffraction – On the Instrumentation

Sample Rotations (four)

Pixel Array Area 
Detector

X-ray In

Detector Rotations (two)

Sample Location and 
Center of all Rotations

Detector Arm

Flux Monitor,
Instrument Shutter, 
Beam Slits and Filters

Five Axis Instrument 
Centering Table
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Reciprocal Space (FCC)
With a (001) Surface
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CTR Diffraction – On the Instrumentation

X-rays delivered from 
upstream optics

Sample



University of Chicago 42July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Reciprocal Space (FCC)
With a (001) Surface
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CTR Diffraction – On the Instrumentation

𝑸𝑸

𝒌𝒌𝒊𝒊

ir  -  kkQ =

𝒌𝒌𝒓𝒓

𝒌𝒌𝒓𝒓

Sample:
bcc single crystal 
with a 001 surface 
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(0 0 1.3)

Reciprocal Space (FCC)
With a (001) Surface
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(0 0 1.3)
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Ewald Sphere

(0 0 1.3)
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𝒌𝒌𝒊𝒊
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𝑸𝑸(𝟎𝟎,𝟎𝟎,𝟏𝟏.𝟑𝟑)

𝒌𝒌𝒊𝒊

𝒌𝒌𝒓𝒓

(0,0,2)

Ewald Sphere

|𝑸𝑸 𝟎𝟎,𝟎𝟎,𝟏𝟏.𝟑𝟑 |

(2,2,2)

(2,0,2)

(2,0,2)

(0,2,2)

(0,0,0) (2,0,2)
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𝒌𝒌𝒊𝒊

𝒌𝒌𝒓𝒓

(0,0,2)

Ewald Sphere

Specular Rod:
• A rod that only probes 

the z direction of the 
crystal

• Does not require order in 
x and y.  

Off-Specular Rods:
• Rods the probe structure 

in z as well as x and y.  
• Requires order in x and y

(2,2,2)

(2,0,2)

(2,0,2)

(0,2,2)

(0,0,0) (2,0,2)
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𝟏𝟏,𝟏𝟏,𝑳𝑳 𝑹𝑹𝑹𝑹𝑹𝑹

L = 0.3

0 1 2
0

102

103

𝟏𝟏,𝟏𝟏,𝑳𝑳

L = 0.3
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L = 0.6

𝟏𝟏,𝟏𝟏,𝑳𝑳 𝑹𝑹𝑹𝑹𝑹𝑹

0 1 2
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CTR Diffraction – Measurement– Off Specular Rod

L = 1.3
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CTR Diffraction – Measurement– Off Specular Rod

L = 1.8

𝟏𝟏,𝟏𝟏,𝑳𝑳 𝑹𝑹𝑹𝑹𝑹𝑹

0 1 2
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CTR Diffraction – Measurement – Pixel Array Detector

PILATUS 100K detector

FeOOH 00L Rod
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CTR Diffraction – Measurement – Specular Rod

𝟎𝟎,𝟎𝟎, 𝐋𝐋 𝐨𝐨𝐨𝐨 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐨𝐨 𝐑𝐑𝐨𝐨𝐑𝐑
L= 0.3
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CTR Diffraction – Measurement – Specular Rod

𝟎𝟎,𝟎𝟎, 𝐋𝐋 𝐨𝐨𝐨𝐨 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐨𝐨 𝐑𝐑𝐨𝐨𝐑𝐑
L= 0.6
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CTR Diffraction – Measurement – Specular Rod

𝟎𝟎,𝟎𝟎, 𝐋𝐋 𝐨𝐨𝐨𝐨 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐨𝐨 𝐑𝐑𝐨𝐨𝐑𝐑
L= 1.3
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CTR Diffraction – Measurement – Specular Rod

𝟎𝟎,𝟎𝟎, 𝐋𝐋 𝐨𝐨𝐨𝐨 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐨𝐨 𝐑𝐑𝐨𝐨𝐑𝐑
L= 1.8
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Data collection and reduction
Data integration         Data Shell: Image view, ROI control, background 

subtraction and integration

Integration 
parameters

Correction 
factors

Point 
information

Corrected 
structure 
factor

Scan and 
point tree
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Data collection and reduction

Rod data set:
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Data analysis
Fitting with GenX – genetic algorithm:

• X-ray reflectivity, CTR, multilayers

• Allows simultaneous stable refinement of many 
parameters

• Python - easily modified, extended

• Surface XRD code for layered structures

• User-friendly GUI

Journal of 

Applied
Crystallography

GenX: an extensible X-ray reflectivity refinement program utilizing differential 
evolution
Matts Björck and Gabriella Andersson, 
2011, J. Appl. Cryst. (2007)



University of Chicago 60July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Data analysis

Data and fit 
results

Difference plot

Fit parameter:
• value
• valid range
• error

Data control

Fitting with GenX – genetic algorithm:
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Data analysis
Fitting with GenX – genetic algorithm:

• Python scripting is used to setup the fit model
• Allows considerable customization and 

flexibility



University of Chicago 62July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Sample Environments

In-situ liquid cells:

(a) Transmission and (b) thin film cells
(Fenter 2004)
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Sample Environments

The radiological hazard must be mitigated at the beamline during the measurements  
• Multiple containment required  
• X-ray scattering compatible
• Remote liquid control

GSECARS in situ liquid cell for radioactive material interface studies 

Secondary Containment 
Dome Sample

Liquid Inlet / Outlet

Sample Puck

O-Ring Seals

Secondary Containment / Liquid 
Control

Hermetic Electrical 
Feed-through

Liquid Control and Handling

He Gas Purge

Primary Containment 
Dome Liquid Membrane

Developed in collaboration with Moritz Schmidt, Paul Fenter and Lynda Soderholm (ANL)
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Sample Environments

Check valve

Solution syringe

Gap Index ring

Gap adjustment 
turn wheel

Humidity 
dome

½”-20 Lead 
Screw

Sample

Lead screw nut

Radial bearing

Solution inlet / outlet

Quartz single crystal 
sample mount

Kapton solution 
capture membrane

300µm dia. X 25µm thick chalcophanite crystal

PEEK sample cell

Thin flexible PEEK 
joint

+200µm 
membrane gap

-200µm 
membrane gap

O-ring membrane 
Seal

+200µm 

Adjustable gap thin membrane cell
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Sample Environments

Inlet

Outlet

Dome

Sample
3mm Dia.

O-ring Seal

Counter 
Electrode

Reference Electrode

Working Electrode

Total Cell
Dia. = 19 mm Pt counter electrode

Ag-AgCl reference electrodeSolution ports

O-ring

3 mm Dia. hematite crystal

Miniature electrochemistry cell

Collaboration with M. McBriarty, K. Rosso, PNNL Spherical Tefzel dome traps 200-500 µm 
electrolyte solution 

Cell Dia. = 
19 mm
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Electrochemistry at the (1-102) surface Hematite 

Inlet

Outlet

Dome

Sample
3mm Dia.

O-ring Seal

Counter 
Electrode

Reference Electrode

Working Electrode

Total Cell
Dia. = 19 mm

(1-102) surface of hematite (α-Fe2O3) Electrochemical Cell 
for Interface Scattering

Potential-Specific Structure at the Hematite–Electrolyte Interface
M.E. McBriarty, J.E. Stubbs, P.J. Eng, K.M. Rosso (2018)  J. Phys. Chem. C. 121:12236

Crystal Truncation Rod 
Data Set

The atomic-scale structure of the interface between a transition metal oxide and 
aqueous electrolyte regulates the interfacial chemical reactions fundamental to 
(photo)electrochemical energy conversion and electrode degradation.
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Atomic models of the hematite–water interface 
derived from CTR fits.

Time-averaged atom density in the 
surface normal direction.

Electrochemistry at the (1-102) surface Hematite 

Water molecules flip in response to 
applied potential at pH 7
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CTR Diffraction – RAXR

Adds elemental specificity to CTR measurements
The location, occupancy, and distribution width of a specific adsorbed element on a 
surface can be determined by measuring the structure factor as a function of energy 
through an absorption edge of the element at a fixed point on the CTR.  

Resonant Anomalous X-ray Reflectivity (RAXR)

Non-resonant Structure factor - as a function of HKL at fixed energy far from absorption edge 

𝐹𝐹𝑐𝑐(𝐻𝐻,𝐾𝐾, 𝐿𝐿) = �
k=1

𝑚𝑚

𝑓𝑓𝑎𝑎,𝑏𝑏𝑒𝑒𝑖𝑖2𝜋𝜋(𝑥𝑥𝑘𝑘𝐻𝐻+𝑦𝑦𝑘𝑘𝐾𝐾+𝑧𝑧𝑘𝑘𝐿𝐿) 𝑒𝑒−𝑀𝑀𝑗𝑗 Sum over all non-resonant 
atoms in the unit cell

Resonant Structure factor – as a function or energy through an absorption edge at fixed HKL

𝐹𝐹𝑐𝑐,𝑟𝑟𝐹𝐹𝑠𝑠(𝐻𝐻,𝐾𝐾, 𝐿𝐿,𝐸𝐸) = �
𝑗𝑗=1

𝑚𝑚

(𝑓𝑓𝑗𝑗′(𝐸𝐸) + 𝑖𝑖𝑓𝑓𝑗𝑗′′(𝐸𝐸))𝑒𝑒𝑖𝑖2𝜋𝜋(𝑥𝑥𝑗𝑗𝐻𝐻+𝑦𝑦𝑗𝑗𝐾𝐾+𝑧𝑧𝑗𝑗𝐿𝐿) 𝑒𝑒−𝑀𝑀𝑗𝑗 Sum over all resonant atoms in 
the unit cell

𝐸𝐸𝑠𝑠𝑏𝑏𝑟𝑟𝑠𝑠 𝐻𝐻𝐾𝐾𝐿𝐿,𝐸𝐸 = 𝑁𝑁1𝑁𝑁2 𝐹𝐹𝑐𝑐(𝐻𝐻𝐾𝐾𝐿𝐿) + 𝐹𝐹𝑐𝑐,𝑟𝑟𝐹𝐹𝑠𝑠(𝐻𝐻𝐾𝐾𝐿𝐿,𝐸𝐸) 𝑒𝑒𝑖𝑖𝜋𝜋𝐿𝐿

Non-resonant atomic 
scattering factor

Anomalous dispersion terms
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CTR Diffraction – RAXR

I(HKL,E) ∝ N1
2N2

2 𝐹𝐹𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐻𝐻𝐾𝐾𝐿𝐿)𝐹𝐹𝑐𝑐𝑖𝑖𝑟𝑟(𝐿𝐿) + 𝐹𝐹𝑐𝑐(𝐻𝐻𝐾𝐾𝐿𝐿) + 𝐹𝐹𝑐𝑐,𝑟𝑟𝐹𝐹𝑠𝑠(𝐻𝐻𝐾𝐾𝐿𝐿,𝐸𝐸) 𝑠𝑠𝑏𝑏𝑟𝑟𝑠𝑠

2

The resonant intensity results from the interference between the non-resonant and resonant 
components of the total structure factor 

The anomalous dispersion terms:     𝑓𝑓𝑗𝑗′(𝐸𝐸) + 𝑖𝑖𝑓𝑓𝑗𝑗′′(𝐸𝐸) are determined experimentally

Measured XANES profile 
of element of interest

Determined by difference 
Kramers-Kroning transform
Cross et al. Phys.Rev. B (1998) 

(Park et al., J Appl Crystallogr 2007)
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CTR Diffraction – RAXR
Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface

Specular CTR

RAXR spectra:
Energy scans across Pu LIII edge at fixed Q
Fit phase & amplitude for Pu height & coverage

Clean muscovite surface exposed to Pu(III) solution

M. Schmidt, S.S. Lee, R.E. Wilson, K.E. Knope, F. Bellucci, P.J. Eng, J.E. Stubbs, L. Soderholm, P. Fenter (2013) Environ. Sci. Technol. 47: 14178-14184
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CTR Diffraction – RAXR

Pu has broad vertical distribution, peaked at 
10.5 Å and extends >70 Å 

Pu(IV) Nanoparticles 

Muscovite 
surface
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Coordinate transformations, reciprocal space, diffractometry
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Feedback
Lecture – 9:45 – 10:45
Surface and Interface Scattering - Peter Eng
https://forms.office.com/g/NLyUDMAupR
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Total external reflection of x-rays – Arthur H. Compton 
1922
Phil. Mag. Ser. 6. Vol. 45. No. 270. June 1923

History
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History

Snell law:
𝑛𝑛1𝑐𝑐𝑓𝑓𝑠𝑠𝜃𝜃1 = 𝑛𝑛2𝑐𝑐𝑓𝑓𝑠𝑠𝜃𝜃 2

Let:
𝑛𝑛1 = 1, n= 𝑛𝑛2 and 𝜃𝜃2=0

Then critical angle for total external reflection is:

𝜃𝜃 𝑐𝑐 = 2(1 − 𝑛𝑛)
Let 𝑛𝑛 = 1 − 𝛿𝛿 then:

𝜃𝜃𝑐𝑐[𝑚𝑚𝑖𝑖𝑎𝑎𝑜𝑜] = 2𝛿𝛿 = 2.317 𝜆𝜆 𝜌𝜌 𝑍𝑍
𝐴𝐴

For single crystal of Si at 10 keV:

𝜆𝜆 = 1.24Å , 𝜌𝜌 = 2.33 𝑔𝑔𝑚𝑚
𝑐𝑐𝑚𝑚3 , 𝑍𝑍 = 14, 𝐴𝐴 = 28.09𝑔𝑔𝑚𝑚

𝜃𝜃𝑐𝑐 = 3.1𝑚𝑚𝑖𝑖𝑎𝑎𝑜𝑜 (0.18𝑜𝑜)

𝜃𝜃1

𝜃𝜃2
𝑛𝑛2 < 0

𝑛𝑛1 = 1

From the CXRO Website:
http://henke.lbl.gov/optical_constants/mirror2.html

Critical angle for total external reflection of x-rays
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Surface x-ray diffraction measurements at grazing incidence
– Marra, Eisenberger and Cho 1979: 

“X-ray total-external-reflection-Bragg diffraction: A structural study of 
the GaAs-Al interface”

J. Appl. Phys. 50, 4146 (1979)
– I. K. Robinson 1983: 

“Direct Determination of Au(110) Reconstructed Surface by X-Ray 
Diffraction”

Phys. Rev. Lett. 50, 1145 (1983)
– S. Brennan 1985: 

“Two-Dimensional X-Ray Scattering”
Surf. Sci. 153, 1 (1985)

History
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3-D surface x-ray diffraction
– I.K. Robinson 1986: 

“Crystal truncation rods and surface roughness” 
Phys. Rev. B 33, 3830 (1986)

History
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CTR Diffraction – On the Instrumentation

Keta

Kappa Phi
Mu

Del



University of Chicago 80July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Diffractometer Geometry – Off-Specular Rods
For off-specular specify two diffraction geometry parameters:
1) Incidence angle alpha that the ki vector makes with the crystal surface
2) The angle Naz that the surface normal vector makes with the horizontal plane (a plane parallel to the floor in our lab)  

𝑸𝑸(1,1,1.3)

𝒌𝒌𝒊𝒊

𝒌𝒌𝒓𝒓
(1,1,L) Rod

Sample normal 
direction

View from the source View perpendicular to the source

Alpha=5o

Naz=90o



University of Chicago 81July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Diffractometer Geometry –Specular Rod
For specular specify one diffraction geometry parameters:
1) The angle Naz that the surface normal vector makes with the horizontal plane (a plane parallel to the floor in our lab).  

(0,0,L) Rod

Sample normal 
direction

View from the source

Naz=90o

View perpendicular to the source

𝑸𝑸(1,1,1.3)

𝒌𝒌𝒊𝒊

𝒌𝒌𝒓𝒓

𝒌𝒌𝒓𝒓

2𝜃𝜃 𝜃𝜃

𝜃𝜃
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Diffractometer Geometry – Finding the Surface Normal

-+

CHI

+

-

Rotation Center of Eta
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Diffractometer Geometry – Finding the Surface Normal

Phi +10

Chi -0.25

Chi -0.25

Laser Centered at: FLAT_CHI = -0.5 and 
FLAT_PHI = 10
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Diffractometer Geometry: (1,1,1.6), Naz = 90o, alpha = 5o

Vertical Scattering Geometry



University of Chicago 85July 21st, 2022 Peter J. Eng

GeoSoilEnviroCARS 24th National School on Neutron and X-Ray Scattering

Diffractometer Geometry: (1,1,1.6), Naz = 0o, alpha = 5o

Horizontal Scattering Geometry
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