USANS

Ultra-Small-Angle Neutron Scattering Instrument

The USANS instrument is designed for the study of hierarchical structures in natural and man-made materials. It can be considered an advanced version of the classical Bonse-Hart Double-Crystal Diffractometer (DCD), which, in contrast to its single-wavelength reactor-based analog, will operate with the discrete multiwavelength spectrum of Bragg reflections. The optical scheme of the USANS instrument is similar to that of the conventional Bonse-Hart DCD; however, the pulsed nature of SNS offers an opportunity to separate the orders of Bragg reflection in time space using the time-of-flight technique. Thus, the application of time-of-flight to the USANS technique allows the separation of data optimized for flux and the minimum accessible Q while removing one of the most significant contributions to the intrinsic instrument background.

Discrete multiwavelength spectrum created by a family of Bragg reflections.

Source- detector distance	30 m
Focusing	Coppe mosaic Cu (11 crystals
Monochromator	c; (ววก

Moderator

	Cu (111) crystals
Monochromator and analyzer	Si (220) channel-cut, triple-bounce crystals
Bragg angle	70°
Wavelength spectrum	4 Bragg reflections at 3.6, 1.8, 1.2, 0.9 Å
Q range	1x10 ⁻⁵ Å ⁻¹ < Q < 3x10 ⁻³ Å ⁻¹

21-G02309/jdh Dec 2021

APPLICATIONS

USANS provides a new way to solve a broad range of scientific problems such as

- Supramolecular structure of polymer blends
- Macroscale self-similarity of rocks
- Structure of colloidal crystals and alloys
- Hydration of cement pastes
- Aggregation in colloidal dispersions
- Self-assembling of polymers

- Mesoscopic structure of natural composites
- Structure of granular powders
- Morphology of colloidal reinforcing fillers
- Structure and morphology of complex fluids
- Rheology and morphology of hydrogels

For more information, contact

Wei-Ren Chen, chenw@ornl.gov, 865.574.7979 Yingrui Shang, shangy@ornl.gov

neutrons.ornl.gov/usans

CAK RIDGE National Laboratory

Managed by UT-Battelle LLC for the US Department of Energy

Spallation Neutron Source

SPECIFICATIONS

Decoupled

poisoned

hydrogen

beamline 1Δ