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§ >100X faster and 
(sometimes) more 
accurate analysis

§ Enables real-time 
analysis on Gb/s data 
streams

§ Self-driving experiments 
& instruments: 
– maximize info gain in 

minimal time

§ Get more out of data
§ Faster more accurate 

models, sharper images 
etc.

OUTLINE: AI4SCIENCE

AI4Analysis AI4Steering AI4Knowledge



MOTIVATION 1: DATA RATES AND COMPUTE 
NEEDS
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A single instrument (e.g Ptychography) can 
generate data >GB/s

• Need ~PFLOPs to analyze

Data & compute

Data & compute rates outpace Moore’s law

http://archive.synchrotron.org.au/images/AOF2017/Boland---
AOF---Future-light-sources-2017-05-29.pdf

APSU: 10-1000X increase in data and compute needs



MOTIVATION 2: REAL-TIME FEEDBACK
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Experimental steering

Autonomous experiments need 
real-time data inversion 
• Need to invert data on order of 

seconds or less



MOTIVATION 3: INVERSE PROBLEMS IN 
MATERIALS CHARACTERIZATION
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Source: https://www.lightsource.ca/public/images-pdfs-tour-posters/2020.light.pdf

E.g.: Projections -> 3D image

Spectra -> chemical composition

Diffraction -> atomic structure

Inverse problems are computationally expensive!



WHY MACHINE LEARNING?



LEARN FROM DATA

7

Classical 
programming

Transform
Inputs

Outputs

SupervisedOutputs
Transform

Inputs

Unsupervised
Inputs Outputs

ML lets us solve problems that we cannot with traditional methods
• Just need data
• APSU will have LOTS of data

Learnt Transform
Inputs Outputs



TRAINING A NEURAL NETWORK: SUPERVISED 
LEARNING
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• Gradient descent ‘writes code’
• we just provide data



DEEP LEARNING – MORE THAN A NEW TOOL
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Marc Andreessen
Creator: Mosaic browser
Founder: Netscape & Andreessen-Horowitz (>$10 billion AUM)

Hardware 
Stack

Software 
Stack

Data 
Stack

Andrej Karpathy
Director of AI, Tesla

The advent of ‘Software 2.0’



AI4ANALYSIS: COHERENT IMAGING



ML IN PRODUCTION
AI-accelerated User Tools
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Frosik, B. and Harder, R. https://github.com/AdvancedPhotonSource/cohere 11

Yao, Y., Chan, H., Sankaranarayanan, S., Balaprakash, P., Harder, R. J., & Cherukara, M. J. 
(2022). AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg 
coherent diffraction imaging. npj Computational Materials, 8(1), 1-8.

Users do not need to learn ML



COHERENT DIFFRACTION IMAGING
X-ray Coherent diffraction imaging (CDI)
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• Resolution improves with smaller wavelength
• High penetration power
• Coherent-based, lensless imaging

Resolution not limited by optics

Miao, Jianwei, et al. Science 348.6234 (2015): 530-535.

Different CDI geometries and modes

Coherent X-ray beam

Object

Diffraction pattern

Computational lens



In-situ catalysis

Kim, Dongjin, et al. Nature communications 9.1 
(2018): 1-7.

Biological imaging

Genoud, S. et al. Chem Sci 11, 8919–8927 (2020). 

Bhartiya, A. et al. Chromosome Res 29, 
107–126 (2021).

Liu, T. et al. Nature 606, 305–312 (2022).

Battery materials

COHERENT DIFFRACTION IMAGING
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Holler, Mirko, et al. Nature 543.7645 (2017): 402-406.

Semiconductors characterizationX-ray CDI application



𝑛 = 1− 𝛿 + 𝑖𝛽Refractive index:

𝜓 = 𝜓!𝑒"#$% = 𝜓!𝑒"# &'()"* % ~ 𝑒'#*%𝑒'"#(%
𝑶(𝒓)

Absorption contrast: A = 𝑂(𝑟) = 𝑒'#*%

Phase contrast:          𝜙 = 𝐴𝑟𝑔 𝑂 𝑟 = −𝑘𝛿𝑡

Phase information lost

O = A𝑒!"

Object

Diffraction pattern
𝐼 = ℱ 𝜓 +

Phase retrieval

Transmission function

Measurement
Fourier 

Transform

What’s measured?What’s reconstructed?
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Intensity of the diffraction signal

COHERENT DIFFRACTION IMAGING

Coherent X-ray beam

Diffraction 
pattern



PHASE RETRIEVAL-COMPUTATIONAL LENS
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• Fundamental requirement to recover an image of object
• Provide phase imaging

Better contrast modality in hard x-ray

Measured diffraction 
intensity

Object

FFT
Start point 
(random 
initialization)

Reciprocal space 
constraints

Real-space 
constraint 

FFT-1

Error-reduction (ER), Hybrid input-output (HIO), et al



§ Computationally expensive
§ Sensitive to the initial guess and 

choice of algorithms

Direct inversion

Measured 
intensity

Amplitude

Phase

Deep learning

ü Faster data inversion speed

§ Need for a large volume of labeled 
training data

ML FOR PHASE RETRIEVAL
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Measured intensity
(Input)

Complex image
(Output)

Real-space 
constraint

Iterative phase retrieval method



AUTOPHASENN
Unsupervised NN for 3D BCDI phase retrieval
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3D convolutional neural network:
Learn the inversion from input intensity to images of object

Forward model:
Eliminate the need for ground truth image in training
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AUTOPHASENN
Training data generation

Simulated data

Chan, Henry, et al. Applied Physics Reviews 8.2 (2021): 021407.

Experimental data

Acquired at 34-ID-C at APS 

104k training data
~12 hours training time on 8 A100 GPUs (40GB)



AUTOPHASENN
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Network performance with simulated data

Tested on ~2k simulated crystals (not seen during the 
training) 

𝐼!: predicted diffraction intensity
𝐼": measured diffraction intensity
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q 100x speed up compared to conventional iterative phase retrieval
q Combined with the refinement, the result is comparable/slightly better to the 

traditional phase retrieval while being ∼10 times faster.

Network performance with experimental data 



AUTOPHASENN IN COHERE
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BRAGGNN: AI@EDGE FOR HEDM
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Slide contents from: J. Almer, H. Sharma B. Suter et al.

Today: 1000 cpu-hours per scan (20 mins)
APSU: 10,000 cpu-hours per scan (30 s) 

https://www.andrew.cmu.edu/user/suter/HEDM
Tools.html



BRAGGNN: AI@EDGE FOR HEDM
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Liu, Z., Sharma, H., Park, J.S., Kenesei, P., Miceli, A., Almer, J., Kettimuthu, R. and Foster, 
I., 2022. BraggNN: Fast X-ray bragg peak analysis using deep learning. IUCrJ, 9(1).

• Deep CNN that outputs peak position
• 200X faster and more accurate than 

pseudo-Voigt fitting
• AI@Edge processes streaming data



AXEAP: ARGONNE X-RAY EMISSION ANALYSIS 
PACKAGE
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Inhui Hwang, Chengjun Sun et. al., ANL software disclosure SF-21-050

• Converts emission data into 
spectra in real-time using 
Unsupervised ML.

• NN predicts oxidation and spin 
state from XES spectra



AI4STEERING



Problem: 
• Given an unknown sample, how 

should we acquire data to maximize 
information gain in minimal time?

Approach: 
• Sample a few (~1%) points randomly
• Use a pre-trained NN to predict the 

most important points to acquire. 
• Decision is made in ~ 1s

Result: 
• AI approach reconstructs image with 

far fewer points

Experiment: 
• Scanning Bragg diffraction imaging 

(008 peak) of layered material 
(WSe2)

SMART DATA ACQUISITION
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Saugat Kandel, Tao Zhou  et al. 



‘Ground truth’ : 100 nm steps

4.3X less points

Locations chosen by AI to scan
- Each yellow dot is a scan point

Full-res image

AI-guided acquisition

SMART DATA ACQUISITION
AI

4S
te

er
in

g

Saugat Kandel, Tao Zhou  et al. 

AI@Edge drives instrument

NN inference @ edge Route optimization



AI-GUIDED ACQUISITION AT NANOPROBE
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Saugat Kandel, Tao Zhou  et al. 



AUTOFOCUS: AUTOMATED BEAM FOCUS AND 
ALIGNMENT
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Optimized Mirror focusing
‘Digital Twin’ of beamline in Oasys

Saugat Kandel, Luca Rebuffi et al. 



ACCELERATOR TUNING AND FAULT MITIGATION
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• AI for efficient accelerator operation
• Achieve and maintain optimal accelerator performance 

through reinforcement learning (RL) and Bayesian 
optimization (BO). 

• Designed a fully integrated ‘digital twin’ environment for 
simulation and debugging based on experimentally 
collected data. 

• Experimental benchmarks have demonstrated new 
methods to be faster in recovering full performance of 
the accelerator after a perturbation.

• AI to predict power supply trips in the storage 
ring:

• Advance warning about an impending PS trip so that 
preventive action can be taken by the accelerator 
operator or by the PS maintenance group.

• Models trained on historical data since 2001. 
• Anomaly detection through autoencoders. 

Yine Sun, Nikita Kuklev, Ihar Lobach et al. 



AI4KNOWLEDGE



Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F. and Foster, I., 2020. TomoGAN: low-dose 
synchrotron x-ray tomography with generative adversarial networks: discussion. JOSA A, 37(3), pp.422-434.

• Generative adversarial network for denoising and artifact removal
• Up to 1/16th less dose or projections

TomoGAN

TOMOGAN: DENOISING + ARTIFACT REMOVAL 
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Image from: O'Sullivan, James DB, et al. "X-ray 
micro-computed tomography (μCT): an emerging 
opportunity in parasite 
imaging." Parasitology 145.7 (2018): 848-854.



LEARNING MATERIAL MODELS FROM -
XRAY DATA 
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Opportunity
• Build better materials models

• Machine learnt materials models fit to experimental data 
• Eg Water model: x-ray data (C. Benmore) 

Chan, H., Cherukara, M. J., Narayanan, B., Loeffler, T. D., Benmore, C., Gray, S. K., & Sankaranarayanan, 
S. K. (2019). Machine learning coarse grained models for water. Nature communications, 10(1), 1-14.

33

Results

• BLAST ML framework for 
model development

• > 10 widely used models for 
2D materials, oxide 
materials, water etc. 

Our water model: ~highest scoring, ~least expensive



LEARNING MATERIAL MODELS FROM 
DIFFRACTION DATA 
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• Active learning:
• Obtain an atomic models that reproduces 

the measured x-ray data with quantum 
mechanical accuracy 

• ML scheme uses an automated closed loop 
via an active-learner, which is initialized by 
diffraction measurements, and sequentially 
improves an unsupervised ML model using 
a Gaussian Approximation Potential (GAP) 
approach 

Sivaraman, G., Gallington, L., Krishnamoorthy, A. N., Stan, M., Csányi, G., Vázquez-Mayagoitia, Á., & Benmore, C. J. (2021). 
Experimentally driven automated machine-learned interatomic potential for a refractory oxide. Physical Review Letters, 126(15), 156002.

Sivaraman, G., Guo, J., Ward, L., Hoyt, N., Williamson, M., Foster, I., Benmore, C. and Jackson, N., 2021. Automated development of 
molten salt machine learning potentials: application to LiCl. The Journal of Physical Chemistry Letters, 12(17), pp.4278-4285.



THANK YOU! QUESTIONS?
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FEEDBACK
Lecture – 2:15 – 3:15
AI impacting experiments and analysis – Yudong Yao & Mathew Cherukara
https://forms.office.com/g/GzVHXHCSBg


