Skip to main content
Oak Ridge National Laboratory
  • About Us
  • User Facilities
  • Science & Discovery
  • News
  • Our People
  • Careers

 
 

Neutron Sciences Directorate

  • Request Beam Time
  • HFIR Virtual Tour
  • SNS Virtual Tour
  • Home
  • About
    • About
      • Overview
      • Neutron Science Careers
      • Neutron Advisory Board
      • Accelerator and Target Advisory Committee (ATAC)
      • Neutron Sciences Procurement Group
    • Facilities
      • High Flux Isotope Reactor
      • Spallation Neutron Source
      • User Laboratories
      • SNS - Take a Virtual Tour
      • SNS Klystron Gallery - Take a Virtual Tour
      • HFIR - Take a Virtual Tour
    • Divisions
      • Executive Office
      • Neutron Technologies Division
      • Neutron Scattering Division
      • Research Accelerator Division
      • Research Reactors Division
  • Outreach/Education
    • Introduction
      • Overview
      • Contact Us
    • News & Events
      • HFIR Celebrates 60 Years
      • 2026 Neutron Sciences Calendar
      • News Stories
      • Science Highlights
      • Workshops & Seminars
    • Virtual Tours
      • SNS - Take a Virtual Tour
      • SNS Klystron Gallery - Take a Virtual Tour
      • HFIR - Take a Virtual Tour
    • Neutron Nexus
      • Nexus Program Overview
      • Neutron Ambassador Program
      • New User Beamtime (NUBe) Program
      • Why Neutrons? See Basic2Breakthrough Video
      • A Glimpse into Neutron Sciences at ORNL
      • Instrument Selector Wheel
    • Educational Opportunities
      • Neutron Scattering School
      • Neutron Scattering Graduate Research at ORNL
    • Neutrons Sciences Careers
      • Careers
      • See Neutron Sciences Open Positions
      • See Neutron Sciences Careers Flyer
  • Future
    • Overview
    • Projects & Upgrades
      • Second Target Station
      • HFIR Beryllium Reflector Replacement
      • HFIR Cold Guide Hall Extension
      • HFIR Pressure Vessel Replacement Project
      • HFIR & SNS 5-Year Working Schedule
  • Science
    • Science
      • Overview
      • Science Highlights
    • Science Initiatives
      • Biological Materials and Systems
      • Chemistry
      • Geochemistry and Environmental Sciences
      • Computing, Modeling, and Data Analytics
      • Physics of Matter under Extremes
      • Materials and Engineering
      • Quantum Materials
      • Soft Matter and Polymers
    • Science Techniques
      • Neutron Scattering
        • Diffraction
        • Imaging
        • Reflectometry
        • Small Angle Neutron Scattering
        • Spectroscopy
      • Nuclear
        • Gamma Irradiation
        • In-Vessel Irradiation
        • Nuclear Forensics (Neutron Activation Analysis)
  • For Users
    • Introduction
      • Overview
      • Contact Us
    • Become A User
      • How to Submit a Proposal
      • Proposal Review Process
      • Proposal Types
      • Proposal Writing Tips
      • IPTS Proposal Form
      • Integrated Proposal Tracking System (IPTS)
      • Proposal Statistics
      • Proposal Calls
      • New User Beamtime (NUBe) Program
    • User Guide
      • User Charter
      • Plan Your Visit
      • Plan Your Visit Checklist
      • Shipping Guide
      • Onsite at ORNL
      • After Your Experiment
      • User Guide to Remote Experiments
    • Support
      • Data Management
      • Sample Environment
      • User Laboratories
    • Quick Links
      • Center for Nanophase Materials Sciences (CNMS)
      • Integrated Proposal Tracking System (IPTS)
      • ORNL Guest Portal
      • Publications for SNS and HFIR (PuSH)
      • SNS-HFIR User Group (SHUG)
      • Shull Wollan Center
      • User Newsletter
      • Signup for Newsletter
      • User Survey Results
  • Industry
  • Publications
  • Instruments
    • Instruments
      • Overview
    • Support
      • User Laboratories
      • Sample Environment
      • Data Management
    • High Flux Isotope Reactor
      • BIO-SANS | Biological Small-Angle Neutron Scattering Instrument | CG-3
      • CTAX | Cold Neutron Triple-Axis Spectrometer | CG-4C
      • DEMAND | Dimensional Extreme Magnetic Neutron Diffractometer | HB-3A
      • DEV BEAMS | Instrument Development Beamline | HB-2D CG-1A CG-1B CG-4B
      • GP-SANS | General-Purpose Small-Angle Neutron Scattering Diffractometer | CG-2
      • HIDRA | High Intensity Diffractometer for Residual stress Analysis | HB-2B
      • IMAGINE | Laue Diffractometer | CG-4D
      • MARS | Multimodal Advanced Radiography Station | CG-1D
      • POWDER | Neutron Powder Diffractometer | HB-2A
      • PTAX | Polarized Triple-Axis Spectrometer | HB-1
      • TAX | Triple-Axis Spectrometer | HB-3
      • VERITAS | Versatile Intense Triple-Axis Spectrometer | HB-1A
      • WAND² | Wide-Angle Neutron Diffractometer | HB-2C
    • Spallation Neutron Source
      • ARCS | Wide Angular-Range Chopper Spectrometer | BL-18
      • BASIS | Backscattering Spectrometer | BL-2
      • CNCS | Cold Neutron Chopper Spectrometer | BL-5
      • CORELLI | Elastic Diffuse Scattering Spectrometer | BL-9
      • EQ-SANS | Extended Q-Range Small-Angle Neutron Scattering Diffractometer | BL-6
      • FNPB | Fundamental Neutron Physics Beam Line | BL-13
      • HYSPEC | Hybrid Spectrometer | BL-14B
      • LIQREF | Liquids Reflectometer | BL-4B
      • MAGREF | Magnetism Reflectometer | BL-4A
      • MANDI | Macromolecular Neutron Diffractometer | BL-11B
      • NOMAD | Nanoscale-Ordered Materials Diffractometer | BL-1B
      • NSE | Neutron Spin Echo Spectrometer | BL-15
      • POWGEN | Powder Diffractometer | BL-11A
      • SEQUOIA | Fine-Resolution Fermi Chopper Spectrometer | BL-17
      • SNAP | Spallation Neutrons and Pressure Diffractometer | BL-3
      • TOPAZ | Single-Crystal Diffractometer | BL-12
      • USANS | Ultra-Small-Angle Neutron Scattering Instrument | BL-1A
      • VENUS | Versatile Neutron Imaging Instrument | BL-10
      • VISION | Vibrational Spectrometer | BL-16B
      • VULCAN | Engineering Materials Diffractometer | BL-7
  • Staff
Home » All News

All News

  • “The question I ask myself is how we can make uncertainty our friend instead of our enemy. That’s what inspires me to do research, to make the unknown known.”—Arnab Banerjee (Image credit: ORNL/Butch Newton)
    Arnab Banerjee: traversing the unknown, befriending uncertainty
    May 21, 2018
  • Energy absorbing cast aluminum lattice samples, before deformation (left) and after deformation (right), were examined at HFIR’s polychromatic cold neutron beamline (CG-1D) for structural quality and behavior under loads. (Image credit: ORNL/Genevieve Martin)
    Centuries-old Foundry Process Finds New High-Tech Use
    May 15, 2018
  • IMAGE CAPTION: John Einhorn (left) and Matt Steiner working with the Neutron Residual Stress Mapping Facility instrument, beamline HB-2B, at ORNL’s High Flux Isotope Reactor. (Image credit: Genevieve Martin)
    Taking the Stress out of Residual Stress Mapping
    May 10, 2018
  • Investigating the realization of quantum spin ice, researchers Romain Sibille (left) and Nicolas Gauthier are the first users to use HYSPEC’s upgraded supermirror array built by their colleagues at the Paul Scherrer Institute in Switzerland. (Image credit: ORNL/Genevieve Martin)
    PSI Researchers Seek Existence of Exotic Quantum Spin Ice
    May 2, 2018
  • Colin Sarkis and Kate Ross of Colorado State University are using neutrons to study a material with an unusual magnetic structure. This research could both enhance their team’s fundamental understanding of frustrated magnetism and lead to improvements in digital information storage. (Image credit: ORNL/Genevieve Martin)
    Unusual Magnetic Structure May Support Next-Generation Technology
    April 25, 2018
  • Neutron interactions revealed the orthorhombic structure of the hybrid perovskite stabilized by the strong hydrogen bonds between the nitrogen substituent of the methylammonium cations and the bromides on the corner-linked PbBr6 octahedra. (Image credit: ORNL/Jill Hemman)
    Neutrons Provide Insights into Increased Performance for Hybrid Perovskite Solar Cells
    April 23, 2018
  • From left, John Dutcher, Josh Sampson and John Atkinson of the University of Guelph prepare phytoglycogen nanoparticles found in corn to study on the EQ-SANS instrument at ORNL’s Spallation Neutron Source. The team’s findings could advance many biomedical and personal care applications. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy
    Neutrons—Nanosize matters
    April 18, 2018
  • Uppsala University researcher Marvin Seibert is using neutrons to study RuBisCO, an abundant enzyme essential to life on earth. His team hopes to determine how plants and other organisms use RuBisCO to catalyze a reaction called carbon fixation that converts carbon dioxide into useful organic compounds. (Image credit: ORNL/Genevieve Martin)
    Spinach Used in Neutron Studies Could Unearth Secret to Stronger Plant Growth
    April 18, 2018
  • Marc Janoschek, left, and David Fobes discuss features of quantum materials. (Image Credit: Los Alamos National Laboratory)
    Self-Assembling, tunable interfaces found in quantum materials
    March 26, 2018
  • Biochemistry Ph.D. student Gabriela Schroder works at Oak Ridge National Laboratory. (Photo by Genevieve Martin)
    Student Spotlight: “I Enjoy the Challenge of Solving Problems”
    March 21, 2018
  • A newly discovered material called BiMn3Cr4O12, represented by the crystal structure, exhibits a rare combination of magnetic and electrical properties. The arrows illustrate the spin moments for the elements chromium (Cr) in yellow and manganese (Mn) in blue. Studying this material’s behavior could lead to improved applications in technology and information storage. (Image credit: Institute of Physics, Chinese Academy of Sciences/Youwen Long)
    Neutrons Help Demystify Multiferroic Materials
    March 19, 2018
  • Neutron scattering allowed direct observation of how aurein induces lateral segregation in the bacteria membranes, which creates instability in the membrane structure. This instability causes the membranes to fail, making harmful bacteria less effective. Reprinted with permission from “Effect of an Antimicrobial Peptide on Lateral Segregation of Lipids, a Structure and Dynamics Study by Neutron Scattering,” Veerendra Kumar Sharma and Shuo Qian. Langmuir. Copyright 2019. American Chemical Society.
    Neutrons—Fighting superbugs
    March 5, 2018
  • Notre Dame Professor Peter Kilpatrick making adjustments to the EQ-SANS sample loader in preparation for neutron investigation. (ORNL/Genevieve Martin)
    Neutrons Provide New Polish for Petroleum Processing and More
    March 5, 2018
  • (Image credit: ORNL/Jill Hemman)
    Neutrons Reveal Promising Properties of Novel Antioxidant Polymer
    February 26, 2018
  • Researcher Rob Schmidt and his team are using neutrons at HFIR’s CG-1D imaging instrument to study the development of dendrites with hope of improving the design of next-generation lithium ion batteries. Dendrites are thin microscopic fibers that can carry electrical current inside lithium batteries and, in some cases, cause safety and reliability issues. (Image credit: ORNL/Genevieve Martin)
    Testing Lithium Battery Limitations May Improve Safety and Lifetimes
    February 21, 2018
  • The Weyl semimetal state is induced when the opposing motions of the electrons cause the Dirac cones to split in two (illustrated on the left by outward facing electrons, opposite the inward facing electrons on the right). The abnormal state enables greater electrical flow with minimal resistance. (Image credit: ORNL/Jill Hemman)
    Neutrons Reveal the Wild Weyl World of Semimetals
    February 19, 2018
  • ORNL researchers Todd Toops, Charles Finney, and Melanie DeBusk (left to right) hold an example of a particulate filter used to collect harmful emissions in vehicles. Using neutrons, they are cultivating a better understanding of how heat treatments and oxidation methods can remove layers of soot and ash from these filters, which could lead to improved fuel efficiency. (Image credit: ORNL/Genevieve Martin)
    Particulate Filter Research May Enable More Fuel-Efficient Vehicles
    February 14, 2018
  • A calendar poster showcasing some recent scientific publications from HFIR and SNS. Image credit: Jill Hemman/ORNL
    SNS and HFIR 2018 Calendar Poster
    February 14, 2018
  • National School on Neutron and X-Ray Scattering
    February 12, 2018
  • This image shows the active site of hCA II. The active site is flanked by hydrophilic (violet) and hydrophobic (green) binding pockets that can be used to design specific drugs targeting cancer-associated hCAs. Five clinical drugs are shown superimposed in the hCA II active site, based on room-temperature neutron structures. (ORNL/Andrey Kovalevsky)
    Neutron Study of Glaucoma Drugs Offers Clues About Enzyme Targets for Aggressive Cancers
    February 12, 2018

Pages

  • « first
  • ‹ previous
  • …
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • …
  • next ›
  • last »
  • Contact Us
Neutron Sciences Directorate
One Bethel Valley Rd
Oak Ridge, TN 37831

Office Phone: 865-574-0558
User Office Phone: 865-574-4600

QUICK LINKS

  • Do Research Here
  • Careers
  • Internal Users
  • Internal NScD Staff
  • Internal NUPO Staff
  • Contact SHUG

CONNECT WITH US

  • ORNL SNS on Facebook
  • ORNL SNS on Instagram
  • ORNL on Twitter
  • ORNL on LinkedIn
  • ORNL on Flickr
  • ORNL on YouTube

DOE_white.png

Department of Energy

Oak Ridge National Laboratory is managed by UT-Battelle LLC for the US Department of Energy

  • Internal Users
  • Accessibility
  • Nondiscrimination/1557
  • Security & Privacy Notice
  • Main menu
    • Home
    • About
      • About
        • Overview
        • Neutron Science Careers
        • Neutron Advisory Board
        • Accelerator and Target Advisory Committee (ATAC)
        • Neutron Sciences Procurement Group
        • Neutron Ambassador Program
        • Why Neutron Scattering? See Basic2Breakthrough Video
      • Facilities
        • High Flux Isotope Reactor
        • Spallation Neutron Source
        • User Laboratories
        • SNS - Take a Virtual Tour
        • SNS Klystron Gallery - Take a Virtual Tour
        • HFIR - Take a Virtual Tour
      • Divisions
        • Executive Office
        • Neutron Scattering Division
        • Neutron Technologies Division
        • Research Accelerator Division
        • Research Reactors Division
    • Outreach/Education
      • Introduction
        • Overview
        • Contact Us
      • News & Events
        • HFIR Celebrates 60 Years
        • 2026 Neutron Sciences Calendar
        • News Stories
        • Science Highlights
        • Workshops & Seminars
      • Virtual Tours
        • SNS - Take a Virtual Tour
        • SNS Klystron Gallery - Take a Virtual Tour
        • HFIR - Take a Virtual Tour
      • Neutron Nexus
        • Nexus Program Overview
        • Neutron Ambassador Program
        • New User Beamtime (NUBe) Program
        • Why Neutrons? See Basic2Breakthrough Video
        • A Glimpse into Neutron Sciences at ORNL
        • Instrument Selector Wheel
      • Educational Opportunities
        • Neutron Scattering School
        • Inside The Innovations
        • Neutron Scattering Graduate Research at ORNL
      • Neutrons Sciences Careers
        • Careers
        • See Neutron Sciences Open Positions
        • See Neutron Sciences Careers Flyer
    • Future
      • Overview
      • Projects & Upgrades
        • Second Target Station
        • HFIR Beryllium Reflector Replacement
        • HFIR Cold Guide Hall Extension
        • HFIR Pressure Vessel Replacement Project
        • HFIR & SNS 5-Year Working Schedule
    • Science
      • Science
        • Overview
        • Science Highlights
      • Science Initiatives
        • Biological Materials and Systems
        • Chemistry
        • Geochemistry and Environmental Sciences
        • Computing, Modeling, and Data Analytics
        • Physics of Matter under Extremes
        • Materials and Engineering
        • Quantum Materials
        • Soft Matter and Polymers
      • Science Techniques
        • Neutron Scattering
          • Diffraction
          • Imaging
          • Reflectometry
          • Small Angle Neutron Scattering
          • Spectroscopy
        • Nuclear
          • Gamma Irradiation
          • In-Vessel Irradiation
          • Nuclear Forensics (Neutron Activation Analysis)
    • For Users
      • Introduction
        • Overview
        • Contact Us
      • Become A User
        • How to Submit a Proposal
        • Proposal Review Process
        • Proposal Types
        • Proposal Writing Tips
        • IPTS Proposal Form
        • Integrated Proposal Tracking System (IPTS)
        • Proposal Statistics
        • Proposal Calls
        • New User Beamtime (NUBe) Program
      • User Guide
        • User Charter
        • Plan Your Visit
        • Plan Your Visit Checklist
        • Shipping Guide
        • Onsite at ORNL
        • After Your Experiment
        • User Guide to Remote Experiments
      • Support
        • Data Management
        • Sample Environment
        • User Laboratories
      • Quick Links
        • Center for Nanophase Materials Sciences (CNMS)
        • Integrated Proposal Tracking System (IPTS)
        • ORNL Guest Portal
        • Publications for SNS and HFIR (PuSH)
        • SNS-HFIR User Group (SHUG)
        • Shull Wollan Center
        • User Newsletter
        • Signup for Newsletter
        • User Survey Results
    • Industry
    • Publications
    • Instruments
      • Instruments
        • Overview
      • Support
        • Data Management
        • Sample Environment
        • User Laboratories
      • High Flux Isotope Reactor
        • BIO-SANS | Biological Small-Angle Neutron Scattering Instrument | CG-3
        • CTAX | Cold Neutron Triple-Axis Spectrometer | CG-4C
        • DEMAND | Dimensional Extreme Magnetic Neutron Diffractometer | HB-3A
        • DEV BEAMS | Instrument Development Beamline | HB-2D CG-1A CG-1B CG-4B
        • GP-SANS | General-Purpose Small-Angle Neutron Scattering Diffractometer | CG-2
        • HIDRA | High Intensity Diffractometer for Residual stress Analysis | HB-2B
        • IMAGINE | Laue Diffractometer | CG-4D
        • MARS | Multimodal Advanced Radiography Station | CG-1D
        • POWDER | Neutron Powder Diffractometer | HB-2A
        • PTAX | Polarized Triple-Axis Spectrometer | HB-1
        • TAX | Triple-Axis Spectrometer | HB-3
        • VERITAS | Versatile Intense Triple-Axis Spectrometer | HB-1A
        • WAND² | Wide-Angle Neutron Diffractometer | HB-2C
      • Spallation Neutron Source
        • ARCS | Wide Angular-Range Chopper Spectrometer | BL-18
        • BASIS | Backscattering Spectrometer | BL-2
        • CNCS | Cold Neutron Chopper Spectrometer | BL-5
        • CORELLI | Elastic Diffuse Scattering Spectrometer | BL-9
        • EQ-SANS | Extended Q-Range Small-Angle Neutron Scattering Diffractometer | BL-6
        • FNPB | Fundamental Neutron Physics Beam Line | BL-13
        • HYSPEC | Hybrid Spectrometer | BL-14B
        • LIQREF | Liquids Reflectometer | BL-4B
        • MAGREF | Magnetism Reflectometer | BL-4A
        • MANDI | Macromolecular Neutron Diffractometer | BL-11B
        • NOMAD | Nanoscale-Ordered Materials Diffractometer | BL-1B
        • NSE | Neutron Spin Echo Spectrometer | BL-15
        • POWGEN | Powder Diffractometer | BL-11A
        • SEQUOIA | Fine-Resolution Fermi Chopper Spectrometer | BL-17
        • SNAP | Spallation Neutrons and Pressure Diffractometer | BL-3
        • TOPAZ | Single-Crystal Diffractometer | BL-12
        • USANS | Ultra-Small-Angle Neutron Scattering Instrument | BL-1A
        • VENUS | Versatile Neutron Imaging Instrument | BL-10
        • VISION | Vibrational Spectrometer | BL-16B
        • VULCAN | Engineering Materials Diffractometer | BL-7
    • Staff